今天给各位分享人脸识别系统应用前景的知识,其中也会对人脸识别系统市场前景进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
如何取消人脸识别
本文贡献者:【妄言 Nonsense】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答人脸识别是资本和人才的比拼 应用场景日渐多元化
• 人脸识别是起点,独角兽们的人工智能会走得更宽
• 人才助力人脸识别独角兽 大鱼吃小鱼、优胜劣汰
资本一向是判断某个领域前景的风向标,人工智能成了毋庸置疑的风口——人工智能领域的投融资在迅速增多,人工智能的企业数量也在随之增多。公开资料显示,从2016年1月到2017年2月这一年间,人工智能领域融资事件共发生360余起,几乎平均一天达成一项融资。
不过,科技互联网领域盛极一时的领域都有周期性,经过了非理性的疯狂生长,终会退烧,重回理性成长轨道。创新工场创始人兼CEO李开复曾表示,明年初将会出现第一波倒下的AI公司以及投资人。
一个新兴细分领域刮起台风之时,总会吸引众多的创业者和热钱投入其中,但最终经过几轮淘汰赛的比拼和角逐,最终市场上只会剩下几个寡头甚至一个超级巨擘的局面,从百团大战、打车软件大战、到共享单车,再到人工智能以及更细的人脸识别,都将会是这样一个优胜劣汰的过程。
目前,人脸识别的江湖中,商汤、旷视、云从、依图,被李开复称为人脸识别的四个独角兽。热钱和融资再燃烧一两年,除了这四家之外的人脸识别公司,或许将迎来其生命周期的尾声。
与此同时,即便独角兽们在人脸识别领域有着深耕,但一方面依然面临着Facebook、谷歌、腾讯等国内外互联网巨头强敌的环伺,另一方面也将应对着人工智能技术日新月异的自我挑战和颠覆。
人脸识别是基于人的面部特征信息进行身份识别的一种生物识别技术。使用摄像头或者摄像机采集含有人脸的图像或视频,自动检测图像信息和跟踪人脸,对检测到的人脸进行脸部的一系列相关分析技术。
未来至少在3-5年人工智能领域都是人才战,是脑力游戏。全球也就是几十个人来做突破性工作,核心是看最顶尖的研究人员的智商PK,看谁能够做出突破。
商汤拥有亚洲最大的深度学习研究团队,包括18名教授,以及来自麻省理工学院、斯坦福大学、北大、清华等世界名校的120余名博士生。
此外,商汤科技已与香港中文大学、清华大学、浙江大学、上海交通大学等众多高校院所建立了合作。其中与香港中文大学、浙江大学分别建立有联合实验室,共同推进前沿基础研究。
商汤科技也会进一步继续利用名校+名企的模式,为企业培养精英人才,加速科技转化,通过产学研结合的模式,共同打造培养创新型、复合型高层次人才的示范平台,促进地区产业升级,实现高校、企业与地区的三赢局面。商汤的人才优势体现在系统性,从导师制到各个共建研究室,实习生机制,商汤建立了系统性的产学研体系。
云从科技创始人周曦师从美国工程院院士、计算机视觉之父——黄煦涛教授,专注于人工智能识别领域的机器视觉研究。周曦带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠。
云从科技目前由上海、成都、重庆三个研发中心,美国 UIUC 和硅谷两个前沿实验室,及中科院、上海交大两个联合实验室组成三级研发架构。云从科技研发团队成员 300 多人,80%拥有硕士学历。目前,云从与公安部、四大银行、民航总局建立联合实验室,推动人工智能产品标准的建立。
旷视科技汇集了来自清华大学、美国哥伦比亚大学、斯坦福大学、微软亚洲研究院等国际顶级院校、科研机构的技术极客,以及来自谷歌、阿里巴巴、华为、微软等跨国企业的一流产品牛人。
依图技术团队来自MIT、Google、阿里巴巴等知名学术和工业机构。创始人朱珑在美国加州大学洛杉矶分校,获统计学博士,师从霍金的弟子艾伦·尤尔(Alan Yuille)教授,从事计算机视觉的统计建模和人工智能的研究。在麻省理工学院人工智能实验室担任博士后研究员,深入研究大脑科学和计算摄影学。
为什么人脸识别在国内这么红?
一方面,人工智能大赛道中,人脸识别算其中发展较为成熟的应用领域。
另一方面,人脸识别是符合国家政策趋势,是惠及民生的领域,国家863计划、国家科技支撑计划、自然科学基金都拨出了专款资助人脸识别的相关研究。在国家政策的支持和完善下,人脸识别技术将会被推向更广阔的日常领域。
金融、安防是目前人脸识别应用最广泛的两个领域。商汤、旷视、依图、云从,几家公司都在金融和安防领域有深入布局。
• 金融:个人身份验证的攻坚战
云从科技是我国银行业人脸识别应用最普及的供应商,包括农行、建行、中行、交行等全国 50 多家银行已采用云从的产品,市面上许多银行的金融身份认证与远程认证平台是使用的云从技术,这种情况不仅仅因为技术实力强,更因为云从是受邀起草与制定人脸识别国家标准的人脸识别企业,有着过硬的技术指标与研发背景。
其中,中国农业银行超级柜台、刷脸取款,是全国首先应用人脸识别技术的四大行之一。
商汤科技与京东、银联、招商银行、拉卡拉、融360等多家金融机构和银行均有合作。例如,用户在京东钱包上扫描人脸,即可完成比对,实现密码解锁,代替传统密码登录方式,更加方便安全。
商汤提供人脸搜索技术拉卡拉快速完成新用户照片与已有黑名单人脸库的比对,高效准确地筛选出潜在诈骗分子,保护普通用户的权益。通过人证比对和活体检测技术,拉卡拉将获知用户的注册信息是否与操作者本人一致,有效的防止了身份信息盗用情况。
商汤为融360平台提供一体化解决方案包括人脸识别、人证比对、证件识别,完成比对,实现远程身份认证,让金融服务更加方便安全。
旷视背靠阿里巴巴,为支付宝客户端提供人脸登录功能支持,人们无需再输入繁琐的密码,只需对着手机镜头眨眨眼、转转头便可轻松完成登录。
同时,旷视也为支付宝提供了从端到云的 FaceID 远程身份验证服务。此外,旷视也为小米金融、你我贷等互联网金融公司,中信银行、江苏银行、北京银行提供人脸识别服务。
依图科技拥有完整的实名认证解决方案,依靠人脸比对及活体检测技术,为金融企业提供全渠道解决方案(柜面、移动端、自助机具等),并且拥有为招商银行、浦发银行、京东金融、360金控等各类金融企业实施落地的丰富经验。
• 安防:防患未然、惠及民生的保卫战
在惠及国计民生的安防领域,商汤目前在布局智慧城市安防项目。智能视频方面,商汤的SenseFace人脸布控系统已经开始广泛落地。
该系统专门用于大规模视频监控系统中的实时大库人脸识别应用场景,不仅支持1000+路监控视频中的实时人脸捕捉与识别,更可以在千万级人员库中300ms内获得比对结果,现已帮助全国各地公安机关抓获了上百名犯罪分子。
而在图侦(以图搜图)方面,商汤的图腾系统,可以在亿级大库秒级返回结果,快速实现涉案人脸的身份鉴定与身份关联,从而帮助一线警员及时准确出警,实现重大案件的侦破,提升常规案件的破案效率。
在广州市公安局刑警部门应用中,图腾系统上线半年来,实际比对800次,比中357人,已经成功抓捕嫌犯83人。同时在重庆、河北等地也有广泛应用。
在安防领域,云从的产品已在 22 个省上线实战,获得公安部高度认可,引领了公安行业战法的变革。
广东省公安厅采用云从科技人脸识别技术在地铁、车站、重点小区等重要场所进行布控和实战并取得了良好的效果,抓获了一批嫌疑人,为公安破案提供了新的思路和战法,受到全国公安系统广泛关注。
云从曾在一个火车站,通过技术来帮助警察进行针对性布控,在短短一个月的合作中警方控制了两百多个犯罪嫌疑人。
依图用技术实力让江苏的公安部门惊叹其秒刷逃犯的效率。江苏省公安厅曾运用依图系统,将当地常住人口和暂住人口与通缉犯库进行人脸比对,依图系统当天就成功比中17个通缉犯,警方立即抓到了3人。随后,其他省市的公安部门也主动找上门寻求合作。
旷视为公安部第一研究所推出的“网上身份证”提供了人脸识别技术支持。有了网上身份证,每个人都可以在网上生成一本终身唯一编号的“身份证网上副本”,今后办理一些实名认证业务时即可“刷脸”完成认证,不用再携带实体身份证。
通过多因子认证技术实现互联网上的“实名+实人+实证”的真实身份认证,在保护公民隐私信息的同时有效解决了“我就是我”的问题,让市民在网上办事变得更加可靠、安全。
安防的人脸识别应用,如今还逐渐在各项会议和赛事中被大量采用。
商汤在深圳文博会期间,实现了近20万人次的人像识别,并比中20多名前科人员,保障了文博会零案件的发生。此外还应用于夏季达沃斯、东南亚商洽会等。
此前,博鳌亚洲论坛“深圳·开放之城 创新之都”投资交流活动曾采用商汤的智能自动签到机,为参会嘉宾带来便捷的刷脸签到体验,不仅能够认出嘉宾的身份,还能告知他们的座位桌号。
依图在第53届世界乒乓球锦标赛上,通过动态人脸识别系统,智能、准确、灵敏的黑名单报警功能,有效地核实了进场人员身份,保障身份安全。
在2016年G20二十国集团领导人杭州峰会期间,杭州各城区 1000 多家酒店全面采用由旷视提供核心算法的人脸识别身份验证系统,并在杭州市拱墅区实现了全区登记系统并网,方便公安部门随时排查各登记信息,了解人员进出状况。
博鳌亚洲论坛采用云从的动静态结合的人脸比对系统,以视频人像数据为基础,通过大数据监控平台,充分利用视频监控及图像资源完美取代原始的图侦系统。
在互联网领域,商汤通过深度学习算法新浪微博全新的“面孔专辑”功能实现检测出图片中的面孔,并分类归纳。
商汤科技的图像处理技术,针对图片中的暗光以及雾气等进行处理,还原出清晰的图片,已广泛应用于微博相机。
与此同时,商汤的SenseAR增强现实感引擎,可为面部、手势实现各种好玩的AR特效,它基于商汤的人脸关键点检测、人脸跟踪技术,可以实现精准定位效果,目前Faceu就在应用商汤的技术。
旷视为美图旗下的美图秀秀App、美颜相机、美颜手机等一系列软硬件产品提供了人脸识别技术支持。
其中美图秀秀和美颜相机App通过旷视的人脸检测和关键点检测技术,可以在图像中精准定位人脸和五官位置,从而进行人像美白、五官美化等处理,快速完成精准修容。
在手机领域,商汤可以为手机拍照提供人像背景虚化功能,以及智能相册中的人脸聚类功能。目前OPPO、小米等手机中,应用了商汤的此项技术。
譬如在小米MIUI 7中,商汤人脸识别算法就实现了“一人一相册”的面孔相册分类功能。云端存储照片将被自动分类,避免了手动分类照片的繁琐操作,优化了用户体验。
在零售领域,商汤表示餐厅等线下服务行业,针对前来的顾客进行身份识别,当遇到VIP客户时,便可自动激活后续的定制化服务机制。如此一来,VIP客户将不需要主动出示VIP会员卡,大大增强了用户的体验。
无独有偶,龙湖长楹天街今年与旷视合作,在该商场一家咖啡店试点上线了智能会员识别系统。当消费者一步入门店,旷视的智能摄像头和智能感知技术便会自动抓捕消费者的面部图像,随后回传回至会员人像数据库中进行比对,并准确识别出会员的身份信息,而当会员进行消费或二次到店的时候,智能零售系统便能快速地识别出来并提醒商家。
在出行领域,旷视开拓了去年6月底滴滴出行宣布上线五大安全举措保障用户安全出行,其中的人像认证是由旷视提供的 FaceID 身份验证系统完成,用来保证司机注册账户和本人信息相符。
e代驾、易到用车也采用了旷视的人脸识别技术对司机身份进行核验。神州租车则通过旷视的实名验证系统,进行线上用户实名认证,在用户需要租车时,需要通过客户端进行活体检测、人脸比对判断是否为本人办理业务;在线下环节,工作人员对用户进行二次核验,来确保取车人与申请人是同一人,降低业务风险。
在医疗领域,依图的技术还服务于交通、医疗等行业。依图正在寻找让人工智能技术帮助和实现医疗领域的突破,利用最前沿的深度学习技术,将医学领域的专家知识和经验去普及,辅助医生为病人作出精准的诊断,制定适合的医疗方案,提高诊断治疗和体验。
人工智能的应用帮助医生摆脱繁重的重复工作,利用医疗专家的知识和经验建议辅助医生做出准确判断和合理治疗方案,从而更智能和更准确的为患者提供医疗诊断和服务。
总而言之,除了金融、安防之外,互联网、消费电子、汽车电子、零售、医疗、教育等诸多领域都在逐步引入人脸识别,遍地开花是大势所趋。
未来几年是包括人脸识别在内的人工智能技术产业爆发的几年,无论是产品种类、产业规模还是生活方式都会有爆发性的增长和改变,比如农业银行这次应用在刷脸取款上验证用户身份,社保机构也将应用该技术帮助退休老人异地身份验证,而边防、机场、铁路等行业也会在智能通关系统上发力。
有关机构预测,到2020年,人脸识别的市场规模预计达到2000亿,其中通关安防产品达到700亿,在线支付达到500亿,这将是一个很可能产生新的阿里巴巴、腾讯或百度体量级公司的行业。
人工智能的浪潮涌起,让人脸识别公司发展迅速。国内大中城市的人脸识别创业公司们,均表示自身拥有独创科技,姑且不论真正拥有核心技术的公司并不多,并且技术革新的之快,也会让目前的核心技术并非无可替代。
但以人脸识别为代表的计算机视觉技术在人工智能中并非中流砥柱。况且,有分析指出,Google图像识别系统的开放或将预示着未来图像识别免费是大趋势。
自动驾驶等高阶的系统,更能代表人工智能的未来。
商汤科技创始人徐立表示,公司最新一轮融资之后,公司将进一步拓展AI技术的应用领域,包括无人驾驶、智慧医疗等。
云从科技创始人周曦表示,做人脸识别或图像识别这类计算机视觉技术只是第一步,它们是人工智能的“眼睛”,云从的最终目标是人工智能的“大脑”。
依图基于海量交通、出行数据的模型建设优化管理城市交通运行策略,力图做城市数据的大脑,开展大数据综合治堵。
以上就是道尔智控小编解答(妄言 Nonsense)贡献关于“如何取消人脸识别”的答案,接下来继续为你详解用户(蒸黎)解答“人工智能的应用前景”的一些相关解答,希望能解决你的问题!

人工智能的应用前景
本文贡献者:【蒸黎】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答人工智能行业主要上市公司:海康威视(002415)、科大讯飞(002230)、赛为智能(300044)、东杰智能(300486)、闻泰科技(600745)、中兴通讯(000063)、恒生电子(600570)等
本文核心数据:中国人工智能企业数量、中国人工智能企业区域分布、中国人工智能企业投融资、中国人工智能风险分布
全文统计口径说明:1)上述数据均来源于中国企业数据库(企查猫),与全球企业数据库存在一定的误差。2)搜索相关关键词为“人工智能;3)企业筛选逻辑为:企业的名称、产品服务和经营范围中包含了“人工智能”的企业。4)统计时间截至2022年4月29日。5)由于中国企业数据库与全球企业数据库不同,存在一定的统计误差;6)若有特殊统计口径会在图表下方备注。
──中国人工智能企业在2020年注册火爆
根据中国企业数据库企查猫,目前中国人工智能行业的主要企业共有8586家,其中以2020年为主要注册热潮,2020年注册企业数量为2589家,而2021年则为2244家。
──人工智能企业注销企业占比不到10%
根据中国企业数据库企查猫,目前中国人工智能行业的存续企业5985家,占总企业数的70%;存续企业数占比为21%;注销企业数量占总企业数的9%。
──人工智能企业注册资本在500万的企业超过54%
根据中国企业数据库企查猫,目前中国人工智能企业的注册资本主要分布在1000万-5000万之间,相关企业数量为2539家;其次为100万-200万的企业,相关企业数量为1731家。从整体来看,中国人工智能企业注册资本在500万的企业超过56%,在1000万的企业超过39%。
注:已将以美元和港元的注册资本转换为人民币。
──人工智能企业主要注册在广东和江苏
根据中国企业数据库企查猫,目前中国人工智能企业主要分布在长三角和珠三角等地,特别以广东和江苏为代表。截至2022年4月底,广东共有相关人工智能企业数1240家,江苏则有1060家。
──上海的人工智能企业的平均注册资本更高
根据中国企业数据库企查猫,目前中国人工智能企业的平均注册资本区域分布中,上海相关企业的平均注册资本最高为5459万元,除此外,河北、北京和湖南的人工智能企业平均注册规模均在4000万,规模相对较大。
──人工智能企业主要为有限责任企业和独资企业
根据中国企业数据库企查猫,目前存续和在业的企业共7756家,中国人工智能企业以有限责任公司为主,目前共有7166家,其次为独资企业的2203家。
注:1)上述企业为存续和在业企业;2)上述统计未剔除重复值,同一个企业可以同为有限责任公司和独资企业。
──人工智能企业融资主要在A轮和战略融资
根据中国企业数据库企查猫,目前存续和在业的企业共7756家,其中共有284家企业有融资信息,而其中以A轮和战略融资为主。截至2022年中国人工智能企业中,有95家企业为A轮融资,93家企业为战略融资,其次分别为种子轮/天使轮的50家和B轮的27家。
注:上述企业为存续和在业的企业。
──人工智能企业主要在新三板和新四板上市
根据中国企业数据库企查猫,目前存续和在业的企业共7756家,其中7689家未上市,总来来看,人工智能企业的上市率为0.9%。在上市的企业中,以新四板和新三板的企业为主,新四板企业有42家,新三板企业有10家。
注:上述企业为存续和在业的企业。
──人工智能企业中科技型中小企业和专精特新企业较多
根据中国企业数据库企查猫,目前存续和在业的企业共7756家,其中共有523家企业获得科技型中小企业的称号,107家企业为专精特新企业,66家企业为主雏鹰企业。
注:上述企业为存续和在业的企业;2)上述统计未剔除重复值,同一个企业可以同为科技型中小企业和专精特新企业。
──人工智能企业中有发明专利者居多
根据中国企业数据库企查猫,目前存续和在业的企业共7756家,其中1563家企业有专利信息,2093家企业有软件著作权。在专利信息中,人工智能企业以发明为主,拥有发明信息的企业有1263家,申请实用新型的企业有1043家。
注:上述企业为存续和在业的企业;2)上述统计未剔除重复值,同一个企业可以同时拥有多种专利信息和软件著作权。
──人工智能企业中风险以裁判文书和经营异常为主
根据中国企业数据库企查猫,目前存续和在业的企业共7756家,其中539家企业有裁判文书,394家企业存在经营异常,104家企业有行政处罚。
注:上述企业为存续和在业的企业;2)上述统计未剔除重复值,同一个企业可以同时拥有裁判文书和行政处罚。
数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
上文就是道尔智控小编解答贡献者:(蒸黎)分析的关于“人工智能的应用前景”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续详述下文用户【千世。】回答的“人脸识别应用了什么技术”的一些相关疑点做出分析与解答,如果能找到你的答案,可以关注本站。
人脸识别应用了什么技术
本文贡献者:【千世。】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答不同品牌机型采用的面部识别技术方案不同,面部识别效果也会不一样;目前vivo/iQOO系列手机,仅NEX双屏版采用3D人脸识别技术,其余机型均采用Face Wake面部识别,通过识别面部特征点,与录入信息进行匹配从而实现解锁。
注:3D人脸识别技术介绍:3D人脸识别技术能实现面部信息的立体捕捉,通过识别面部的立体特征,降低误识别的可能性,可带来更准确安全的识别。
以上就是道尔智控小编解答(千世。)分析关于“人脸识别应用了什么技术”的答案,接下来继续为你详解用户(感觉↓会有了不起的发现)分析“ai人脸识别技术”的一些相关解答,希望能解决你的问题!
ai人脸识别技术
本文贡献者:【感觉↓会有了不起的发现】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答人脸识别技术的优势
人脸识别作为一种新兴的生物特征识别技术(Biometrics),与虹膜识别、指纹扫描、掌形扫描等技术相比,人脸识别技术在应用方面具有独到的优势:使用方便,用户接受度高人脸识别技术使用通用的摄像机作为识别信息获取装置,以非接触的方式在识别对象未察觉的情况下完成识别过程。直观性突出人脸识别技术所使用的依据是人的面部图像,而人脸无疑是肉眼能够判别的最直观的信息源,方便人工确认、审计,“以貌取人”符合人的认知规律。识别精确度高,快与其它生物识别技术相比,人脸识别技术的识别精度处于较高的水平,误识率、拒认率较低。
不易仿冒在安全性要求高的应用场合,人脸识别技术要求识别对象必须亲临识别现场,他人难以仿冒。人脸识别技术所独具的活性判别能力保证了他人无法以非活性的照片、木偶、蜡像来欺骗识别系统。这是指纹等生物特征识别技术所很难做到的。举例来说,用合法用户的断指即可仿冒合法用户的身份而使识别系统无从觉察。使用通用性设备人脸识别技术所使用的设备为一般的PC、摄像机等常规设备,由于计算机、闭路电视监控系统等已经得到了广泛的应用,因此对于多数用户而言使用人脸识别技术无需添置大量专用设备,从而既保护了用户的原有投资又扩展了用户已有设备的功能,满足了用户安全防范的需求。
基础资料易于获得人脸识别技术所采用的依据是人脸照片或实时摄取的人脸图像,因而无疑是最容易获得的。成本较低,易于推广使用由于人脸识别技术所使用的是常规通用设备,价格均在一般用户可接受的范围之内,与其它生物识别技术相比,人脸识别产品具有很高的性能价格比。概括地说,人脸识别技术是一种高精度、易于使用、稳定性高、难仿冒、性价比高的生物特征识别技术,具有极其广阔的市场应用前景。
以上就是道尔智控小编解答(感觉↓会有了不起的发现)贡献关于“ai人脸识别技术”的答案,接下来继续为你详解用户(拜妳所賜)分析“对人脸识别系统的看法”的一些相关解答,希望能解决你的问题!
对人脸识别系统的看法
本文贡献者:【拜妳所賜】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答在现实生活中,人与人之间的辨认不是通过指纹、掌纹、虹膜等等,而是通过对人面部(人脸)的识别来实现的。因此,在众多的生物特征识别技术中,人脸识别技术最具有吸引力,它最直观、最自然,符合人的认知规律,它具有如下优点:
(一)非接触,用户接受度高。人脸识别技术使用摄像头作为识别信息的获取装置,以非接触方式,自动获取人脸,并完成人脸识别过程。
(二)直观性突出。人脸识别技术所使用的依据是人的面部图像,而人脸无疑是肉眼能够判别的最直观的信息源,“以貌取人”符合人的认知规律。同时也方便后期人工确认,且具有再利用等明显优势。
(三)识别快,不易被察觉。与其它生物识别技术相比,人脸识别属于一种自动识别技术,一秒时间内可以识别好几次。不被察觉的特点对于识别方法也很重要,这会使该识别方法不令人反感,并且因为不容易引起人的注意而不容易被欺骗。
(四)不易仿冒。人脸识别系统要求识别对象必须亲临识别现场,他人无法仿冒。人脸识别技术所独具的活性判别能力,保证了他人无法以非活性的照片、木偶、蜡像乃至人头欺骗识别系统。
(五)应用领域广。除了目前指纹识别的所有应用领域外,人脸识别还可以应用到各种人脸视频监控报警系统、数码相机的人脸检测,以及未来的机器人,具有广阔的市场应用前景。
以上就是道尔智控小编解答(拜妳所賜)回答关于“对人脸识别系统的看法”的答案,接下来继续为你详解用户(续易绿)解答“人脸识别如何解决传统考勤问题”的一些相关解答,希望能解决你的问题!
人脸识别如何解决传统考勤问题
本文贡献者:【续易绿】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答人脸识别如果在光线适应的情况下不好使用,一般存在两个主要问题:
1、人脸模板录入不好,这种情况要重新录入模版。
2、培训不足,使用者不会用,需要加强培训。
比较好的有捷易科技的D501人脸识别考勤机,识别准确率大于99%,处于行业领先水平。
脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。2012年4月,铁路部门宣布车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统;可以对人脸明暗侦测,自动调整动态曝光补偿, 人脸追踪侦测,自动调整影像放大。
人脸识别考勤机产品选择捷易科技,放心安全。
以上就是道尔智控小编解答(续易绿)贡献关于“人脸识别如何解决传统考勤问题”的答案,接下来继续为你详解用户(无声书)解答“人脸识别考勤系统和传统人工考勤”的一些相关解答,希望能解决你的问题!
人脸识别考勤系统和传统人工考勤
本文贡献者:【无声书】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答人脸识别考勤系统和传统人工考勤系统的区别主要是人脸识别考勤系统事先只需采集员工的面像,并建立档案,当员工上下班站在人脸识别考勤机的识别区域内,考勤机上就会快速的记录考勤状况并保存记录。而传统人工考勤系统人和考勤卡分离,无法判定当前使用人是卡的持有者。
人脸识别系统技术考勤优势:
1、非接触,用户接受度高。人脸识别技术使用摄像头作为识别信息的获取装置,以非接触方式,自动获取人脸,并完成人脸识别过程。
2、精确度高,安全可靠:采用人脸识别技术,“刷脸通行”识别精确度高,确保精确识别每一张脸,因而安全性更高。
3、实时考勤记录:当员工识别成功通过门禁时,系统将自动对其考勤信息进行记录上传,实时记录更直观更易于考勤人员的查询、判别、核对以及统计分析。
4、应用领域广。除了目前指纹识别的所有应用领域外,人脸识别还可以应用到各种人脸视频监控报警系统、数码相机的人脸检测,以及未来的机器人,具有广阔的市场应用前景。
人脸识别考勤系统推荐深圳捷易,捷易科技人脸识别门禁系统解决了之前的人脸识别门禁系统的常见问题,满足了公司和企业的人脸识别、考勤、门禁管理的需求,同时人脸模型也会在使用过程中不断迭代优化,更好的解决人员众多且流动性大的问题。
以上就是道尔智控小编解答(无声书)解答关于“人脸识别考勤系统和传统人工考勤”的答案,接下来继续为你详解用户(楠冬隐寒)回答“人脸识别发展历史和现状”的一些相关解答,希望能解决你的问题!
人脸识别发展历史和现状
本文贡献者:【楠冬隐寒】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍:
第一阶段(1964年~1990年)
这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的方法。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于1973年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。
第二阶段(1991年~1997年)
这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。
美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)方法一道成为人脸识别的性能测试基准算法。
这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于1992年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。
贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别方法是这一时期的另一重要成果。该方法首先采用主成分分析(PrincipalComponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该方法目前仍然是主流的人脸识别方法之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别方法以及近期的一些基于核学习的改进策略。
麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。该方法通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。
人脸识别中的另一种重要方法——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换[12]特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该方法的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该方法的扩展。
局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。LFA在本质上是一种基于统计的低维对象描述方法,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。LFA技术已商业化为著名的FaceIt系统,因此后期没有发表新的学术进展。
由美国国防部反毒品技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于1994年,1995年和1996年组织了3次人脸识别评测,几种最知名的人脸识别算法都参加了测试,极大地促进了这些算法的改进和实用化。该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。
柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。ASM/AAM将人脸描述为2D形状和纹理两个分离的部分,分别用统计的方法进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。
总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别商业公司。从技术方案上看, 2D人脸图像线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流技术。
第三阶段(1998年~现在)
FERET’96人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态问题逐渐成为研究热点。与此同时,人脸识别的商业系统进一步发展。为此,美国军方在FERET测试的基础上分别于2000年和2002年组织了两次商业系统评测。
基奥盖蒂斯(Georghiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别方法是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉方法进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的7幅同一视点图像恢复物体的3D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的3幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。识别则通过计算输入图像到每个光照锥的距离来完成。
以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。支持向量机是一个两类分类器,而人脸识别则是一个多类问题。通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。
布兰兹(Blanz)和维特(Vetter)等提出的基于3D变形(3D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别方法是这一阶段内一项开创性的工作。该方法在本质上属于基于合成的分析技术,其主要贡献在于它在3D形状和纹理统计变形模型(类似于2D时候的AAM)的基础上,同时还采用图形学模拟的方法对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更加有利于人脸图像的分析与识别。Blanz的实验表明,该方法在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该方法的有效性。
2001年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的达到了每秒15帧。该方法的主要贡献包括:1)用可以快速计算的简单矩形特征作为人脸图像特征;2)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习方法;3)采用了级联(Cascade)技术提高检测。目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。这为后端的人脸识别提供了良好的基础。
沙苏哈(Shashua)等于2001年提出了一种基于商图像[13]的人脸图像识别与绘制技术。该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。
巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的方法解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。这不仅与先前的光照统计建模方法的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别方法的发展。而且,这使得用凸优化方法来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。
FERET项目之后,涌现了若干人脸识别商业系统。美国国防部有关部门进一步组织了针对人脸识别商业系统的评测FRVT,至今已经举办了两次:FRVT2000和FRVT2002。这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT2002测试就表明Cognitec, Identix和Eyematic三个商业产品遥遥领先于其他系统,而它们之间的差别不大。另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对37437人121,589 幅图像的人脸识别(Identification)最高首选识别率为73%,人脸验证(Verification)的等错误率(EER[14])大约为6%。FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。例如,FRVT2002测试就表明:目前的人脸识别商业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。
总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。而非线性建模方法、统计学习理论、基于Boosting[15]的学习技术、基于3D模型的人脸建模与识别方法等逐渐成为备受重视的技术发展趋势。
总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更加深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。尽管在海量人脸数据比对甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模方法(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。相信随着研究的继续深入,我们的认识应该能够更加准确地逼近这些问题的正确答案。
上文就是道尔智控小编解疑贡献者:(楠冬隐寒)贡献的关于“人脸识别发展历史和现状”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续教妳下文用户【吉祥如意】回答的“学校的人脸识别系统是看什么”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。
学校的人脸识别系统是看什么
本文贡献者:【吉祥如意】, 疑问关键字:人脸识别系统应用前景, 下面就让道尔智控小编为你解答,希望本文能找到您要的答案!
答人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。更多资料可以直接查阅参考资料,希望能对你有所帮助咯!
关于[(人脸识别系统应用前景)人脸识别系统市场前景]的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于人脸识别系统市场前景、人脸识别系统应用前景的信息别忘了在本站进行查找喔。