今天道尔智控就给我们广大朋友来聊聊主流人脸识别算法,以下10个关于主流的人脸识别算法的观点希望能帮助到您找到想要的答案。
iphone人脸识别是什么原理
贡献用户名:【︶筷楽_丗家︶】 ,现在由道尔智控小编为你讲解与【主流人脸识别算法】的相关内容!
贡献者回答不同品牌机型采用的面部识别技术方案不同,面部识别效果也会不一样;目前vivo/iQOO系列手机,仅NEX双屏版采用3D人脸识别技术,其余机型均采用Face Wake面部识别,通过识别面部特征点,与录入信息进行匹配从而实现解锁。
注:3D人脸识别技术介绍:3D人脸识别技术能实现面部信息的立体捕捉,通过识别面部的立体特征,降低误识别的可能性,可带来更准确安全的识别。
以上就是道尔智控小编解答(︶筷楽_丗家︶)贡献关于“iphone人脸识别是什么原理”的答案,接下来继续为你详解用户(魅影メ家族)贡献“什么是人脸识别系统”的一些相关解答,希望能解决你的问题!
什么是人脸识别系统
贡献用户名:【魅影メ家族】 ,现在由道尔智控小编为你解答与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别是资本和人才的比拼 应用场景日渐多元化
• 人脸识别是起点,独角兽们的人工智能会走得更宽
• 人才助力人脸识别独角兽 大鱼吃小鱼、优胜劣汰
资本一向是判断某个领域前景的风向标,人工智能成了毋庸置疑的风口——人工智能领域的投融资在迅速增多,人工智能的企业数量也在随之增多。公开资料显示,从2016年1月到2017年2月这一年间,人工智能领域融资事件共发生360余起,几乎平均一天达成一项融资。
不过,科技互联网领域盛极一时的领域都有周期性,经过了非理性的疯狂生长,终会退烧,重回理性成长轨道。创新工场创始人兼CEO李开复曾表示,明年初将会出现第一波倒下的AI公司以及投资人。
一个新兴细分领域刮起台风之时,总会吸引众多的创业者和热钱投入其中,但最终经过几轮淘汰赛的比拼和角逐,最终市场上只会剩下几个寡头甚至一个超级巨擘的局面,从百团大战、打车软件大战、到共享单车,再到人工智能以及更细的人脸识别,都将会是这样一个优胜劣汰的过程。
目前,人脸识别的江湖中,商汤、旷视、云从、依图,被李开复称为人脸识别的四个独角兽。热钱和融资再燃烧一两年,除了这四家之外的人脸识别公司,或许将迎来其生命周期的尾声。
与此同时,即便独角兽们在人脸识别领域有着深耕,但一方面依然面临着Facebook、谷歌、腾讯等国内外互联网巨头强敌的环伺,另一方面也将应对着人工智能技术日新月异的自我挑战和颠覆。
人脸识别是基于人的面部特征信息进行身份识别的一种生物识别技术。使用摄像头或者摄像机采集含有人脸的图像或视频,自动检测图像信息和跟踪人脸,对检测到的人脸进行脸部的一系列相关分析技术。
未来至少在3-5年人工智能领域都是人才战,是脑力游戏。全球也就是几十个人来做突破性工作,核心是看最顶尖的研究人员的智商PK,看谁能够做出突破。
商汤拥有亚洲最大的深度学习研究团队,包括18名教授,以及来自麻省理工学院、斯坦福大学、北大、清华等世界名校的120余名博士生。
此外,商汤科技已与香港中文大学、清华大学、浙江大学、上海交通大学等众多高校院所建立了合作。其中与香港中文大学、浙江大学分别建立有联合实验室,共同推进前沿基础研究。
商汤科技也会进一步继续利用名校+名企的模式,为企业培养精英人才,加速科技转化,通过产学研结合的模式,共同打造培养创新型、复合型高层次人才的示范平台,促进地区产业升级,实现高校、企业与地区的三赢局面。商汤的人才优势体现在系统性,从导师制到各个共建研究室,实习生机制,商汤建立了系统性的产学研体系。
云从科技创始人周曦师从美国工程院院士、计算机视觉之父——黄煦涛教授,专注于人工智能识别领域的机器视觉研究。周曦带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠。
云从科技目前由上海、成都、重庆三个研发中心,美国 UIUC 和硅谷两个前沿实验室,及中科院、上海交大两个联合实验室组成三级研发架构。云从科技研发团队成员 300 多人,80%拥有硕士学历。目前,云从与公安部、四大银行、民航总局建立联合实验室,推动人工智能产品标准的建立。
旷视科技汇集了来自清华大学、美国哥伦比亚大学、斯坦福大学、微软亚洲研究院等国际顶级院校、科研机构的技术极客,以及来自谷歌、阿里巴巴、华为、微软等跨国企业的一流产品牛人。
依图技术团队来自MIT、Google、阿里巴巴等知名学术和工业机构。创始人朱珑在美国加州大学洛杉矶分校,获统计学博士,师从霍金的弟子艾伦·尤尔(Alan Yuille)教授,从事计算机视觉的统计建模和人工智能的研究。在麻省理工学院人工智能实验室担任博士后研究员,深入研究大脑科学和计算摄影学。
为什么人脸识别在国内这么红?
一方面,人工智能大赛道中,人脸识别算其中发展较为成熟的应用领域。
另一方面,人脸识别是符合国家政策趋势,是惠及民生的领域,国家863计划、国家科技支撑计划、自然科学基金都拨出了专款资助人脸识别的相关研究。在国家政策的支持和完善下,人脸识别技术将会被推向更广阔的日常领域。
金融、安防是目前人脸识别应用最广泛的两个领域。商汤、旷视、依图、云从,几家公司都在金融和安防领域有深入布局。
• 金融:个人身份验证的攻坚战
云从科技是我国银行业人脸识别应用最普及的供应商,包括农行、建行、中行、交行等全国 50 多家银行已采用云从的产品,市面上许多银行的金融身份认证与远程认证平台是使用的云从技术,这种情况不仅仅因为技术实力强,更因为云从是受邀起草与制定人脸识别国家标准的人脸识别企业,有着过硬的技术指标与研发背景。
其中,中国农业银行超级柜台、刷脸取款,是全国首先应用人脸识别技术的四大行之一。
商汤科技与京东、银联、招商银行、拉卡拉、融360等多家金融机构和银行均有合作。例如,用户在京东钱包上扫描人脸,即可完成比对,实现密码解锁,代替传统密码登录方式,更加方便安全。
商汤提供人脸搜索技术拉卡拉快速完成新用户照片与已有黑名单人脸库的比对,高效准确地筛选出潜在诈骗分子,保护普通用户的权益。通过人证比对和活体检测技术,拉卡拉将获知用户的注册信息是否与操作者本人一致,有效的防止了身份信息盗用情况。
商汤为融360平台提供一体化解决方案包括人脸识别、人证比对、证件识别,完成比对,实现远程身份认证,让金融服务更加方便安全。
旷视背靠阿里巴巴,为支付宝客户端提供人脸登录功能支持,人们无需再输入繁琐的密码,只需对着手机镜头眨眨眼、转转头便可轻松完成登录。
同时,旷视也为支付宝提供了从端到云的 FaceID 远程身份验证服务。此外,旷视也为小米金融、你我贷等互联网金融公司,中信银行、江苏银行、北京银行提供人脸识别服务。
依图科技拥有完整的实名认证解决方案,依靠人脸比对及活体检测技术,为金融企业提供全渠道解决方案(柜面、移动端、自助机具等),并且拥有为招商银行、浦发银行、京东金融、360金控等各类金融企业实施落地的丰富经验。
• 安防:防患未然、惠及民生的保卫战
在惠及国计民生的安防领域,商汤目前在布局智慧城市安防项目。智能视频方面,商汤的SenseFace人脸布控系统已经开始广泛落地。
该系统专门用于大规模视频监控系统中的实时大库人脸识别应用场景,不仅支持1000+路监控视频中的实时人脸捕捉与识别,更可以在千万级人员库中300ms内获得比对结果,现已帮助全国各地公安机关抓获了上百名犯罪分子。
而在图侦(以图搜图)方面,商汤的图腾系统,可以在亿级大库秒级返回结果,快速实现涉案人脸的身份鉴定与身份关联,从而帮助一线警员及时准确出警,实现重大案件的侦破,提升常规案件的破案效率。
在广州市公安局刑警部门应用中,图腾系统上线半年来,实际比对800次,比中357人,已经成功抓捕嫌犯83人。同时在重庆、河北等地也有广泛应用。
在安防领域,云从的产品已在 22 个省上线实战,获得公安部高度认可,引领了公安行业战法的变革。
广东省公安厅采用云从科技人脸识别技术在地铁、车站、重点小区等重要场所进行布控和实战并取得了良好的效果,抓获了一批嫌疑人,为公安破案提供了新的思路和战法,受到全国公安系统广泛关注。
云从曾在一个火车站,通过技术来帮助警察进行针对性布控,在短短一个月的合作中警方控制了两百多个犯罪嫌疑人。
依图用技术实力让江苏的公安部门惊叹其秒刷逃犯的效率。江苏省公安厅曾运用依图系统,将当地常住人口和暂住人口与通缉犯库进行人脸比对,依图系统当天就成功比中17个通缉犯,警方立即抓到了3人。随后,其他省市的公安部门也主动找上门寻求合作。
旷视为公安部第一研究所推出的“网上身份证”提供了人脸识别技术支持。有了网上身份证,每个人都可以在网上生成一本终身唯一编号的“身份证网上副本”,今后办理一些实名认证业务时即可“刷脸”完成认证,不用再携带实体身份证。
通过多因子认证技术实现互联网上的“实名+实人+实证”的真实身份认证,在保护公民隐私信息的同时有效解决了“我就是我”的问题,让市民在网上办事变得更加可靠、安全。
安防的人脸识别应用,如今还逐渐在各项会议和赛事中被大量采用。
商汤在深圳文博会期间,实现了近20万人次的人像识别,并比中20多名前科人员,保障了文博会零案件的发生。此外还应用于夏季达沃斯、东南亚商洽会等。
此前,博鳌亚洲论坛“深圳·开放之城 创新之都”投资交流活动曾采用商汤的智能自动签到机,为参会嘉宾带来便捷的刷脸签到体验,不仅能够认出嘉宾的身份,还能告知他们的座位桌号。
依图在第53届世界乒乓球锦标赛上,通过动态人脸识别系统,智能、准确、灵敏的黑名单报警功能,有效地核实了进场人员身份,保障身份安全。
在2016年G20二十国集团领导人杭州峰会期间,杭州各城区 1000 多家酒店全面采用由旷视提供核心算法的人脸识别身份验证系统,并在杭州市拱墅区实现了全区登记系统并网,方便公安部门随时排查各登记信息,了解人员进出状况。
博鳌亚洲论坛采用云从的动静态结合的人脸比对系统,以视频人像数据为基础,通过大数据监控平台,充分利用视频监控及图像资源完美取代原始的图侦系统。
在互联网领域,商汤通过深度学习算法新浪微博全新的“面孔专辑”功能实现检测出图片中的面孔,并分类归纳。
商汤科技的图像处理技术,针对图片中的暗光以及雾气等进行处理,还原出清晰的图片,已广泛应用于微博相机。
与此同时,商汤的SenseAR增强现实感引擎,可为面部、手势实现各种好玩的AR特效,它基于商汤的人脸关键点检测、人脸跟踪技术,可以实现精准定位效果,目前Faceu就在应用商汤的技术。
旷视为美图旗下的美图秀秀App、美颜相机、美颜手机等一系列软硬件产品提供了人脸识别技术支持。
其中美图秀秀和美颜相机App通过旷视的人脸检测和关键点检测技术,可以在图像中精准定位人脸和五官位置,从而进行人像美白、五官美化等处理,快速完成精准修容。
在手机领域,商汤可以为手机拍照提供人像背景虚化功能,以及智能相册中的人脸聚类功能。目前OPPO、小米等手机中,应用了商汤的此项技术。
譬如在小米MIUI 7中,商汤人脸识别算法就实现了“一人一相册”的面孔相册分类功能。云端存储照片将被自动分类,避免了手动分类照片的繁琐操作,优化了用户体验。
在零售领域,商汤表示餐厅等线下服务行业,针对前来的顾客进行身份识别,当遇到VIP客户时,便可自动激活后续的定制化服务机制。如此一来,VIP客户将不需要主动出示VIP会员卡,大大增强了用户的体验。
无独有偶,龙湖长楹天街今年与旷视合作,在该商场一家咖啡店试点上线了智能会员识别系统。当消费者一步入门店,旷视的智能摄像头和智能感知技术便会自动抓捕消费者的面部图像,随后回传回至会员人像数据库中进行比对,并准确识别出会员的身份信息,而当会员进行消费或二次到店的时候,智能零售系统便能快速地识别出来并提醒商家。
在出行领域,旷视开拓了去年6月底滴滴出行宣布上线五大安全举措保障用户安全出行,其中的人像认证是由旷视提供的 FaceID 身份验证系统完成,用来保证司机注册账户和本人信息相符。
e代驾、易到用车也采用了旷视的人脸识别技术对司机身份进行核验。神州租车则通过旷视的实名验证系统,进行线上用户实名认证,在用户需要租车时,需要通过客户端进行活体检测、人脸比对判断是否为本人办理业务;在线下环节,工作人员对用户进行二次核验,来确保取车人与申请人是同一人,降低业务风险。
在医疗领域,依图的技术还服务于交通、医疗等行业。依图正在寻找让人工智能技术帮助和实现医疗领域的突破,利用最前沿的深度学习技术,将医学领域的专家知识和经验去普及,辅助医生为病人作出精准的诊断,制定适合的医疗方案,提高诊断治疗和体验。
人工智能的应用帮助医生摆脱繁重的重复工作,利用医疗专家的知识和经验建议辅助医生做出准确判断和合理治疗方案,从而更智能和更准确的为患者提供医疗诊断和服务。
总而言之,除了金融、安防之外,互联网、消费电子、汽车电子、零售、医疗、教育等诸多领域都在逐步引入人脸识别,遍地开花是大势所趋。
未来几年是包括人脸识别在内的人工智能技术产业爆发的几年,无论是产品种类、产业规模还是生活方式都会有爆发性的增长和改变,比如农业银行这次应用在刷脸取款上验证用户身份,社保机构也将应用该技术帮助退休老人异地身份验证,而边防、机场、铁路等行业也会在智能通关系统上发力。
有关机构预测,到2020年,人脸识别的市场规模预计达到2000亿,其中通关安防产品达到700亿,在线支付达到500亿,这将是一个很可能产生新的阿里巴巴、腾讯或百度体量级公司的行业。
人工智能的浪潮涌起,让人脸识别公司发展迅速。国内大中城市的人脸识别创业公司们,均表示自身拥有独创科技,姑且不论真正拥有核心技术的公司并不多,并且技术革新的之快,也会让目前的核心技术并非无可替代。
但以人脸识别为代表的计算机视觉技术在人工智能中并非中流砥柱。况且,有分析指出,Google图像识别系统的开放或将预示着未来图像识别免费是大趋势。
自动驾驶等高阶的系统,更能代表人工智能的未来。
商汤科技创始人徐立表示,公司最新一轮融资之后,公司将进一步拓展AI技术的应用领域,包括无人驾驶、智慧医疗等。
云从科技创始人周曦表示,做人脸识别或图像识别这类计算机视觉技术只是第一步,它们是人工智能的“眼睛”,云从的最终目标是人工智能的“大脑”。
依图基于海量交通、出行数据的模型建设优化管理城市交通运行策略,力图做城市数据的大脑,开展大数据综合治堵。
上文就是道尔智控小编解答贡献者:(魅影メ家族)解答的关于“什么是人脸识别系统”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,现在接着继续解析下文用户【唯爱阿阳】贡献的“人脸识别系统如何解除”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。
人脸识别系统如何解除
贡献用户名:【唯爱阿阳】 ,现在由道尔智控小编为你解答与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测。
以上就是道尔智控小编分享贡献者:(唯爱阿阳)贡献的关于“人脸识别系统如何解除”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续探讨下文用户【七瞒】分享的“身份证人脸识别是什么原理”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。
身份证人脸识别是什么原理
贡献用户名:【七瞒】 ,现在由道尔智控小编为你详解与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
中文名
人脸识别
别名
人像识别、面部识别
工具
摄像机或摄像头
传统技术
可见光图像的人脸识别
处理方法
人脸识别算法
人脸识别技术有滥用趋势
10月13日,小蛮腰科技大会在广州开幕。在“后疫情时代的大数据应用与隐私保护”分论坛上,南方都市报人工智能伦理课题组和App专项治理工作组发布了《人脸识别应用公众调研报告(2020)》。《报告》显示,六成受访者认为人脸识别技术有滥用趋势,三成受访者表示已因人脸信息泄露、滥用而遭受隐私或财产损失。
新华网 2020-10-19
快速
导航
技术特点
技术流程
识别算法
识别数据
配合程度
优势困难
主要用途
应用前景
主要产品
应用示例
发展历史
人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。[1]
技术特点
人脸识别
传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。
迅速发展起来的一种解决方案是基于主动近红外图像的多光源人脸识别技术。它可以克服光线变化的影响,已经取得了卓越的识别性能,在精度、稳定性和方面的整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。
人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:
非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;
非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;
除此之外,还符合视觉特性:“以貌识人”的特性,以及操作简单、结果直观、隐蔽性好等特点。
技术流程
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
上文就是道尔智控小编解疑贡献者:(七瞒)贡献的关于“身份证人脸识别是什么原理”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,现在接着继续论述下文用户【背靠背的距离】回答的“人脸识别多少岁能用”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。
人脸识别多少岁能用
贡献用户名:【背靠背的距离】 ,现在由道尔智控小编为你详解与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别的类型,可以根据采用的识别技术及算法技术来进行分类:
技术上可以分为2D的可见光平面算法人脸识别及3D的结构光人脸识别。这2者的区别是,2D的可见光识别可采用照片即可完成人脸的注册登记;3D的结构光人脸识别则需要在对应的识别设备前面进行3D人脸数据采集建模完成注册登记。
按是否能区分活体可分为普通人脸识别及活体人脸识别。这2者的区别是,普通人脸识别不具备活体判断,照片及视频均可能被拿来识别;而活体人脸识别则多了通过人脸识别算法等对识别对象进行活体检测判断,可有效避免各种欺骗识别。
以上就是道尔智控小编解答(背靠背的距离)分析关于“人脸识别多少岁能用”的答案,接下来继续为你详解用户(阳光的`霸气姐)回答“人脸识别技术是哪国人发明的”的一些相关解答,希望能解决你的问题!
人脸识别技术是哪国人发明的
贡献用户名:【阳光的`霸气姐】 ,现在由道尔智控小编为你详解与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别最初在20世纪60年代已经有研究人员开始研究,真正进入初级的应用阶段是在90年代后期,发展至今其技术成熟度已经达到较高的程度。整个发展过程可以分为机械识别、半自动化识别、非接触式识别及互联网应用阶段。
人脸识别技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。
广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。
生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
功能模块
人脸捕获与跟踪功能
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
人脸识别比对
人脸识别分核实式和搜索式二种比对模式。核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。
人脸的建模与检索
可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。
真人鉴别功能
系统可以识别得出摄像头前的人是一个真正的人还是一幅照片。以此杜绝使用者用照片作假。此项技术需要使用者作脸部表情的配合动作。
图像质量检测
图像质量的好坏直接影响到识别的效果,图像质量的检测功能能对即将进行比对的照片进行图像质量评估,并给出相应的建议值来辅助识别。
上文就是道尔智控小编解疑贡献者:(阳光的`霸气姐)分析的关于“人脸识别技术是哪国人发明的”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续概述下文用户【丿love丶傀儡灬队】分析的“戴口罩的人脸识别算法”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。
戴口罩的人脸识别算法
贡献用户名:【丿love丶傀儡灬队】 ,现在由道尔智控小编为你探讨与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别算法研究已久,在背景简单的情形下,大部分算法都能很好的处理。但是,人脸识别的应用范围颇广,仅是简单图像测试,是远远不能满足现实需求的。所以人脸识别算法还是存在很多的难点。
光照
光照问题是机器视觉中的老问题,在人脸识别中的表现尤为明显,算法未能达到完美使用的程度。
姿态
与光照问题类似,姿态问题也是人脸识别研究中需要解决的一个技术难点。针对姿态的研究相对比较少,多数的人脸识别算法主要是针对正面,或接近正面的人脸图像,当发生俯仰或者左右侧而比较厉害的情况下,人脸识别算法的识别率也将会急剧下降。
遮挡
对于非配合情况下的人脸图像采集,遮挡问题是一个非常严重的问题,特别是在监控环境下,往往被监控对象都会带着眼镜﹑帽子等饰物,使得被采集出来的人脸图像有可能不完整,从而影响了后面的特征提取与识别,甚至会导致人脸识别算法的失效。
年龄变化
随着年龄的变化,面部外观也在变化,特别是对于青少年,这种变化更加的明显。对于不同的年龄段,人脸识别算法的识别率也不同。
图像质量
人脸图像的来源可能多种多样,由于采集设备的不同,得到的人脸图像质量也不同,特别是对于那些低分辨率﹑噪声大﹑质量差的人脸图像如何进行有效的人脸识别是个需要关注的问题。同样的,对于高分辨图像,对人脸识别算法的影响也需要进一步研究。
样本缺乏
基于统计学习的人脸识别算法是人脸识别领域中的主流算法,但是统计学习方法需要大量的培训。由于人脸图像在高维空间中的分布是一个不规则的流行分布,能得到的样本只是对人脸图像空间中的一个极小部分的采样,如何解决小样本下的统计学习问题有待进一步的研究。
海量数据
传统人脸识别算法如PCA、LDA等在小规模数据中可以很容易进行训练学习。但是对于海量数据,这些方法其训练过程难以进行,甚至有可能崩溃。
大规模人脸识别
随着人脸数据库规模的增长,人脸算法的性能将呈现下降。
以上就是道尔智控小编解答(丿love丶傀儡灬队)分析关于“戴口罩的人脸识别算法”的答案,接下来继续为你详解用户(空心人。)回答“常用的人脸识别技术有哪些”的一些相关解答,希望能解决你的问题!
常用的人脸识别技术有哪些
贡献用户名:【空心人。】 ,现在由道尔智控小编为你分析与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别 技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
请点击输入图片描述
人脸识别系统的应用特点
1、唯一性:每个人都有一张脸,且无法被复制,仿冒,因此安全性更高。
2、自然性好:人脸识别技术同人类(甚至其它生物)进行个体识别时所利用的生物特征相同,其他生物特征如指纹、虹膜不具备这个特征。
3、简单方便:无需携带卡,识别快,操作简单便捷。
4、非接触性:无需接触设备,不用担心病毒的接触性传染,既卫生,又安全。
请点击输入图片描述
人脸识别技术包含三个部分:
请点击输入图片描述
(1)人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人脸跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人脸比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
识别过程
一般分三步:
(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。
(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
技术流程
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测。
人脸图像预处理
人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机 干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补 偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸图像特征提取
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
人脸图像匹配与识别
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输 出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一 进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
衡量人脸识别的算法能力:拒识率、误识率、通过率,准确率。
以上就是道尔智控小编解答(空心人。)分析关于“常用的人脸识别技术有哪些”的答案,接下来继续为你详解用户(飯团o○)贡献“人脸识别主流算法”的一些相关解答,希望能解决你的问题!
人脸识别主流算法
贡献用户名:【飯团o○】 ,现在由道尔智控小编为你探讨与【主流人脸识别算法】的相关内容!
贡献者回答基于特征脸方法
人脸识别是一个高维的模式识别问题,1987年Sirovich 和 Kirby为减少人脸图像的表示采用了PCA方法(主分量分析方法),1991年Matthew Turk 和 Alex Pentland最早将PCA应用于人脸识别[3],将原始图像投影到特征空间中,得到一系列降维图像,取其主元表示人脸,由于主元具有脸的形状故称为“特征脸”。
特征脸方法是目前较为成功的正面人脸识别方法,但是只考虑了人脸的整体特征且对光照的变化敏感,所以有学者提出了FLD方法,即Fisher脸。通过在Harvard和Yale人脸库上做的测试表明Fisherfaces比Eigenfaces有更低的错误率且对于光照和表情变化有更好的鲁棒性。实验中部分特征脸见图1。
图1 部分特征脸
如前所述,特征脸方法忽略了人脸的局部特征(如:眉毛、眼睛、鼻子、口等)在识别中的作用,因此有学者在特征提取时采用基于多特征(eigenfaces,eigenUpper,eigenTzone,edge distribution)的方法,取得了较好的效果。另外,对人脸图像预处理后,进行特征脸分析也会明显降低错误率。
以上就是道尔智控小编分享贡献者:(飯团o○)贡献的关于“人脸识别主流算法”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,现在接着继续:下文用户【萌生。】回答的“人脸识别系统有什么弊端”的一些相关疑点做出分析与解答,如果能找到你的答案,可以关注本站。
人脸识别系统有什么弊端
贡献用户名:【萌生。】 ,现在由道尔智控小编为你分析与【主流人脸识别算法】的相关内容!
贡献者回答人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测。
关于[主流人脸识别算法,主流的人脸识别算法]的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。