道尔智控 > 人脸识别 > (人脸识别的特征识别吗)人脸识别需要提取哪些特征

(人脸识别的特征识别吗)人脸识别需要提取哪些特征

导读...

本篇文章给大家谈谈人脸识别的特征识别吗,以及人脸识别需要提取哪些特征对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

人脸识别没有穿衣服会留照片吗

贡献用户名:【寄逍遥】 ,现在由道尔智控小编为你讲解与【人脸识别的特征识别吗】的相关内容!

最佳回答面部识别是利用前置摄像头拍摄人脸照片,与手机中已经录入的面部数据进行对比,当相似度达到一定值时,可能会被面貌、外形与您相近的人或物品解锁,目前还不能完全避免。如果存在担心,建议使用密码解锁或指纹解锁。

以上就是道尔智控小编解答(寄逍遥)分析关于“人脸识别没有穿衣服会留照片吗”的答案,接下来继续为你详解用户(ヾ十足娚神范メ」)回答“哪些贷款不需要人脸识别”的一些相关解答,希望能解决你的问题!

人脸识别没有穿衣服会留照片吗

哪些贷款不需要人脸识别

贡献用户名:【ヾ十足娚神范メ」】 ,现在由道尔智控小编为你详解与【人脸识别的特征识别吗】的相关内容!

最佳回答人脸识别工作流程

人脸识别背景:

简单来讲,人脸识别这个问题,就是给定两个人脸,然后判定他们是不是同一个人,这是它最原始的定义。它有很多应用场景,比如银行柜台、海关、手机解锁、酒店入住、网吧认证,会查身份证跟你是不是同一个人。这个应用的主要特点是,在大多数场景下都需要你先提供一个证件,然后跟自己的人脸做比对。手机解锁可能是个例外,但也要求你提前注册一张人脸,然后再进行比对。这是最原始的形式,由用户直接提供需要对比的两个人脸。这也是最简单的形式,相当于做一个二分类。 

注:1:1

进一步来讲,如果想要去做人的搜索呢?比如我们有一个大小为 N 的人脸库,有一张待检索的图片,让我们判断这个人有没有在这个人脸库中出现过。这种情况下,要回答的就有 N 个问题了,分别是:这个人脸是不是库中的人脸1、是不是人脸2,一直到是不是人脸N。如果这 N 个问题回答都是“否”的话,就意味着这个人不在人脸库里面。不在人脸库是一个很难的问题,等于 N 个问题都得回答对,然后才能真正确认它并不这个人脸库里。

实际使用时一般是静态的搜索,比如有一个公安的民警,他从视频或者图片里找到目标人物,把他的脸框出来,然后提交到系统里,在库里面做搜索。然后系统会返回,比如 Top K,K 一般是几十或者100这个量级的数字,会按照相似度把这些人脸排出来,然后人工验证到底哪些是对的。如果 Top 1 就是对的那最好,一般如果能够排到 Top 10 就算是不错的结果,但在 100 名以后的话,这个结果很难对使用的人有帮助了。如果允许TopK的话,这个底库是可以做到比较大的,因为并没有要求一定放到 Top 1。 

注:1:N

当然,在安防或者其他应用场景里有更难的任务,就是人脸的 N : N 搜索,这种情况下我们会有大量的摄像头,每一个都在实时抓拍,有非常多待确认的抓拍人脸,同时库也是相对比较大的。举个例子,在安防领域,假设我们有 100 个摄像头,然后每个摄像头每天抓拍 1 万个人,那么总的搜索次数就是 100 万次。假设这一天有 10 个嫌疑人被摄像头抓拍到,假设我们需要在一个 10 万大小的底库里面去搜索他们。我们有一个算法,这个算法这一天总报警 100 次,警察每一个都去确认,最后抓到了 9 个嫌疑人,这看起来还不错,因为总共出现了 10 个人,抓到了 9 个,召回率是 90%。那我们来看看误报率,100 次报警,对了 9 次,错了 91 次,误报率就是91 除以 100万×10万,大概算下来是 10亿分之0.91,约为 10亿分之1 的误报率。

这个指标在现在的人脸识别算法里还算比较不错的了,但是在公安民警看来没有那么理想,因为他们出警了 100次,只抓到了 9 个人,他们非常想出警 10 次就抓到 9 个人,这样成本就会低很多。那我们来看一下出警 10 次抓到 9 个人的误报率是多少呢?看起来少了一个数量级,但实际上要求误报率要提高两个数量级,因为这个时候误报的次数只有 1 次,1 除以 100万×10万,就是已经到了千亿分之一,这个就非常难达到。即使有一个千亿分之一的算法也只能支持 100 个摄像头的需求,在很多城市里轻轻松松就有上万个摄像头,甚至几十万个。所以算法还要在误报率方面再降低 N 个数量级,或者要求我们有更聪明的使用方式,在还有很多研究的空间。 

注:N:N

人脸识别的基本流程:

人脸识别的基本流程,首先要检测到人脸,检测到之后一般会做关键点的定位,把他的眼睛、鼻子、嘴角等信息都定位出来,利用这个信息对人脸做个矫正,把它变换到比较正情形,便于后面模型分析或者处理时各个部分更好的对齐。最终会提取得到一个人脸的描述特征,通常是一个 100 多维到几百维的特征表达,然后我们用不同人脸特征之间的相似度或者距离,相似度是越高越好,距离是越小越好,去刻画两个人之间的关系,再卡一个域值,来判断这两个人是否为一个人。这次我们讲人脸识别主要就是最后的人脸特征提取的部分。 

影响人脸识别的重要因素:

这里我标红了“模型测评”,评测是件非常难的事,我们针对不同的应用场景做了十几个不同类型的评测 ,因为评测做的不好的话,会影响模型设计,让你判断不清楚哪个模型好、哪个模型差。

大规模人脸评测平台介绍:

之所以要做这个事情有几个原因:

第一,学术界曾经有很多非常有名的测试集,比如 LFW 有 6000 对人脸 1:1 认证。但现在有很多算法都可以达到 99% 甚至 99.8% 的好成绩,所以这个效果已经不能很好的衡量算法的好坏了,可能两个同样在 LFW 上达到 99.8% 的算法,换一个数据集时结果会差很多。

第二,MegaFace 在学术界也是非常有名的。它的测试条件是在 100 万干扰项中找到目标人脸,一开始的时候大家觉得这是个很难的问题,但随着学术界几年的研究,排行榜的第一名已经超过 98.9% 了,看起来也有一定的饱和趋势。这里面一开始是有些噪音的,后来被一些研究人员发现之后做了些清理,就发现这个测试集没有想象得那么难。另外,它提供的正样本人脸对的比较有限,正样本每个人的变化并不是特别的大,导致这个问题可能并没有一开始大家预想的那么难。

于是,我们想办法去扩充做一个更大规模的训练集,希望做更客观的评测在人脸方面做研究的同行们有一个未来几年还可以继续用的测试平台。我们做了两件事情,第一个是做一个比较大的人脸训练集,第二个是做比较大的人脸测试集。训练集大概是有 18 万人,共有 680 万张图片左右,测试集大概有 187 万的人脸。 

上文就是道尔智控小编解答贡献者:(ヾ十足娚神范メ」)解答的关于“哪些贷款不需要人脸识别”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续教你下文用户【绝恋^ǒ^宝贝】解答的“常用的人脸识别技术有哪些”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

常用的人脸识别技术有哪些

贡献用户名:【绝恋^ǒ^宝贝】 ,现在由道尔智控小编为你讲解与【人脸识别的特征识别吗】的相关内容!

最佳回答人脸识别 技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。

人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

请点击输入图片描述

人脸识别系统的应用特点

1、唯一性:每个人都有一张脸,且无法被复制,仿冒,因此安全性更高。

2、自然性好:人脸识别技术同人类(甚至其它生物)进行个体识别时所利用的生物特征相同,其他生物特征如指纹、虹膜不具备这个特征。

3、简单方便:无需携带卡,识别快,操作简单便捷。

4、非接触性:无需接触设备,不用担心病毒的接触性传染,既卫生,又安全。

请点击输入图片描述

人脸识别技术包含三个部分:

请点击输入图片描述

(1)人脸检测

面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:

①参考模板法

首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;

②人脸规则法

由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;

③样品学习法

这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;

④肤色模型法

这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。

⑤特征子脸法

这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。

值得提出的是,上述5种方法在实际检测系统中也可综合采用。

(2)人脸跟踪

面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。

(3)人脸比对

面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。主要采用特征向量与面纹模板两种描述方法:

①特征向量法

该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。

②面纹模板法

该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。

人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。

识别过程

一般分三步:

(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。

(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。

(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。

技术流程

人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。

人脸图像采集及检测

人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。

人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。

主流的人脸检测方法基于特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。

人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测。

人脸图像预处理

人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机 干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补 偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。

人脸图像特征提取

人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。

基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。

人脸图像匹配与识别

人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输 出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一 进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。

衡量人脸识别的算法能力:拒识率、误识率、通过率,准确率。

上文就是道尔智控小编解疑贡献者:(绝恋^ǒ^宝贝)回答的关于“常用的人脸识别技术有哪些”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续谈论下文用户【无视眼前人】贡献的“看房人脸识别是什么意思”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

看房人脸识别是什么意思

贡献用户名:【无视眼前人】 ,现在由道尔智控小编为你解答与【人脸识别的特征识别吗】的相关内容!

最佳回答01

人脸识别技术通过几何特征的人脸检测技术可以快速的识别人体面貌,具有快速、简便、不需要人被动配合的特点。比如自己从一架摄像机前走过,经过人脸识别可以迅速而简便的识别面貌。2

人脸识别技术通过模板匹配人脸检测技术,从数据库当中提取人脸模板进行匹配,具有防伪、防欺诈、准确、直观和方便的特点。比如在政法系统中可以用来抓捕犯人,可以快速的识别出罪犯的伪装。3

人脸识别技术通过统计的人脸检测技术,对于人脸的图像大量搜集构成人脸样本库,采用统计方法强化该系统,从而实现对人脸进行检测和分类。具有高性价比和可扩展性的特点。比如银行加快了工作效率和安全性。

以上就是道尔智控小编解疑贡献者:(无视眼前人)分析的关于“看房人脸识别是什么意思”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续阐述下文用户【青~懵懂^冰雪恋】分析的“人脸识别靠的是什么识别”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

人脸识别靠的是什么识别

贡献用户名:【青~懵懂^冰雪恋】 ,现在由道尔智控小编为你详解与【人脸识别的特征识别吗】的相关内容!

最佳回答人脸识别是采集人脸的生物信息特征,也就是我们所说的生物ID,将其存储在数据库中。在识别时,将人脸和数据库中的生物ID进行比对、识别。

以上就是道尔智控小编解答(青~懵懂^冰雪恋)解答关于“人脸识别靠的是什么识别”的答案,接下来继续为你详解用户(竹花夜如玉)分析“做一个人脸识别的全过程”的一些相关解答,希望能解决你的问题!

做一个人脸识别的全过程

贡献用户名:【竹花夜如玉】 ,现在由道尔智控小编为你分析与【人脸识别的特征识别吗】的相关内容!

最佳回答一般来说,一台人脸识别终端设备系统主要包括硬件软件两个方面,硬件方面:外壳、主板、显示屏、摄像头、补光灯、红外灯;软件方面:操作系统、人脸识别app、算法、后台管理程序。千千万万的各种部件如何组合,调试,适配,这给许多开发者人员造成了巨大的困扰以及大量时间精力投入。

人脸识别系统运行步骤如下:

1. 从摄像头抓取一帧图片。

2. 转换彩色图片帧为灰度图片帧。

3. 检测灰度图片帧的人脸。

4. 处理图片以显示人脸区域(使用 cvSetImageROI() 和 cvCopyImage())。

5. 预处理脸部图片。

6. 识别图片中的人。

现在你已经有了一个用摄像头实时识别人脸的方法,但是要学习新人脸,你不得不关闭这个程序,把摄像头的图片保存成图片文件,更新图片列表,使用离线命令行训练的方法,然后以实时摄像头识别的模式再次运行这个程序。所以实际上,你完全可以用程序来执行实时的摄像头训练!

人脸识别技术基于局部特征区域的单训练样本人脸识别方法。

第一步,需要对局部区域进行定义;

第二步,人脸局部区域特征的提取,依据经过样本训练后得到的变换矩阵将人脸图像向量映射为人脸特征向量;

第三步,局部特征选择(可选);

后一步是进行分类。分类器多采用组合分类器的形式,每个局部特征 对应一个分类器,后可用投票或线性加权等方式得到终识别结果。

以上就是道尔智控小编解答(竹花夜如玉)分析关于“做一个人脸识别的全过程”的答案,接下来继续为你详解用户(帝良)解答“什么是人脸识

今天的内容先分享到这里了,读完本文《(人脸识别的特征识别吗)人脸识别需要提取哪些特征》之后,是否是您想找的答案呢?想要了解更多,敬请关注ask.drzk.cn,您的关注是给小编最大的鼓励。

本文来自网络,不代表本站立场,转载请注明出处:http://ask.drzk.cn/rlsb/19528.html

作者: 道尔智控

道尔智控致力于智慧停车生态化建设,涵盖停车场管理系统、智慧停车系统、停车场系统、车牌识别 、门禁系统、道闸、通道闸、车位引导系统、云停车等。同时又为用户提供各种关于车牌、车型识别停车、停车场系统、通道道闸机等技术小知识,让您停车更智能、更简单、更便捷。
上一篇:(可见光人脸识别技术)三色光识别人脸过程
下一篇:(图片人脸识别)图片人脸识别软件
联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱:drzk@drzk.cn

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部