本文中提到了10个关于人脸识别系统的特性的相关看点,同时还对人脸识别系统的传统方法也有不同的看法,希望本文能为您找到想要的答案,记得关注哦!
人脸识别系统的特点有哪些
本文贡献者:【落落】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答人脸识别主要特性
1、唯一性:每个人都有一张脸,且无法被复制,仿冒,因此安全性更高。
2、自然性好: 人脸识别技术同人类(甚至其它生物)进行个体识别时所利用的生物特征相同,其他生物特征如指纹、虹膜不具备这个特征。
3、简单方便:无需携带卡,识别快,操作简单便捷
4、 非接触性:无需接触设备,不用担心病毒的接触性传染,既卫生,又安全
因此如果将人脸识别技术广泛应用于门禁系统的身份识别系统中,将大大提高门禁系统运行的安全性和可靠性,最大程度上降低通过身份冒充而进入某种场所进行不法犯罪活动的可能性,极大减少了门禁安全系统中现存及潜在的技术漏洞、隐患和风险。
以上就是道尔智控小编解答(落落)分析关于“人脸识别系统的特点有哪些”的答案,接下来继续为你详解用户(万人眼中万个我)贡献“人脸识别系统是根据什么来识别的”的一些相关解答,希望能解决你的问题!

人脸识别系统是根据什么来识别的
热心用户提供:【万人眼中万个我】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答通常人脸识别系统由前端人脸捕获采集子系统,网络传输子系统和后端分析管理子系统组成,前端人脸采集设备负责人脸图像的采集,包括人脸照片和视频流,网络传输子系统负责数据,图片和视频流的传输和交换,后端分析应用平台收到前端收集的人脸图像后,将进行收集,处理,存储,应用,管理和共享相关数据。
人脸识别系统可以根据用户的应用需求支持实时的人脸捕获和检索功能。它还可以提供黑名单库和捕获的图片之间的实时比较信息,从而提供服务以快速有效地查找可疑目标,随着大数据的发展和深度学习的发展,神经网络已经引起了广泛的关注,并且在图像分类,手写识别,语音识别和其他应用方面取得了远远超过传统方法的结果。
香港中文大学的研究人员提出使用卷积神经网络进行人脸识别,利用20万个训练数据,首次在LFW上获得超过人类水平的识别精度,这是人脸识别发展的历史,通过深度学习获得的面部特征表达具有重要的特征,这些特征在手动特征表达中不可用,这些特性是通过数千次大数据培训而自然获得的。
在这种流行病的影响下,口罩没有“密封”面部识别技术。取而代之的是,越来越多的科技公司突破了戴口罩的人脸识别问题,并且人脸识别的准确性得到了提高,依靠物联网和人工智能等高科技的迅猛发展,人脸识别应用场景将越来越广泛,技术创新的一小步是人类幸福的一大步,展望未来,人脸识别技术将在商业,政府和社会的各种应用领域中发挥更大的作用,并使全人类受益。
以上就是道尔智控小编解答(万人眼中万个我)分析关于“人脸识别系统是根据什么来识别的”的答案,接下来继续为你详解用户(残花碎情衷)回答“人脸识别监控系统的工作原理”的一些相关解答,希望能解决你的问题!
人脸识别监控系统的工作原理
热心用户提供:【残花碎情衷】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答人脸识别系统的技术原理是以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。
用人脸识别会议签到系统正是应用先进的面部自动识别技术来实现与会人员的自主签到,智能化办公,提高办事效率,增加与会人员身份准确定位,从而大大提高了会前会务组织、会中会议签到和会后数据查询统计,并节省经费。
迎宾机系统会议签到应用方案是现代会议管理中的一项重要环节,会议签到流程一改传统签到的弊端,与会人员只需从摄像机前走过,利用人体生物特征的唯一性进行身份认证,即时完成到会签到,还能有效识别假冒人员,同时,能即时统计、打印出到会人员名单。缩短到会人员签到时间,减轻工作人员与会人数统计强度,统计数准确、快捷。
3系统设计
3.1系统结构
本方案可应用于各种企事业单位和会议中心,用于与会人员的签到管理,主要由摄像机、显示设备、人脸识别分析盒、管理客户端组成。
在会议室入口签到处安装一台网络摄像机,通过交换机将采集图像传输到迎宾主机,主机可通过串口数据线连接会议室门禁系统,以识别结果通过串口信息来控制门禁打开,有效防止会议无关人员进入,同时连接到显示设备上,在显示器上实时显示识别结果,以及设置的欢迎致辞或提示信息,或用于会议宣传内容播放等。
设备通过局域网内的客户端进行管理和配置信息的下发,在客户端可进行人脸识别库的建立,会议签到统计等功能。系统拓扑如下:
以上就是道尔智控小编解疑贡献者:(残花碎情衷)贡献的关于“人脸识别监控系统的工作原理”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续分享下文用户【而我太傻】贡献的“人脸识别系统的原理是什么”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。
人脸识别系统的原理是什么
热心用户提供:【而我太傻】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答当今社会,人脸识别系统已经是遍地可见。不论是进出办公楼的门禁,还是乘坐地铁时可以刷脸乘坐。人脸识别系统大大的提高了通行的效率,是一项很先进的技术。公众一直以来好奇人脸识别系统的工作原理,认为这是一项黑科技。但其实认真说起来,他也只是数学运算的概率问题。人脸识别系统的工作原理主要有以下这几部分组成。
一、深度学习模型。
人脸识别系统当中的核心和灵魂部分就是深度学习的神经网络模型。所谓神经网络模型其实就是一个运算器,在这个运算器当中,我们可以把它看作一个黑盒子,其中存储着很多的参数,这些参数是可以自动调整的。这个学习模型主要用来进行训练,训练的目的就是能够达到一个人的两张照片输入之后,它的输出结果概率无限接近1。
二、模型训练过程。
对学习模型进行训练,是让他能够记住人脸的特征。通常的做法是采用大量的人脸数据,把这些已经标注好的数据放到这个模型当中,然后告诉它哪一个人的照片跟另外一张是同一个人,通过不断的训练他就记住了人的特征。表现出来的就是学习模型当中的参数,最后固定好。当我们拿两张没有经过训练的图片输进去的时候,它也能够算出两张图片是一个人的概率。
三、自更新系统。
在人脸识别系统当中还有一个重要的部分,就是他能够自我更新自我学习,当他第1次判断出两张照片是同一个人之后,他会把这两张照片作为他的训练集更新自身模型当中的参数,这样它就相当于记住了这个人。以后这个人再来的话很快就判别出来。
人脸识别系统是近些年来深度学习和计算机科学发展的集大成者,其原理很复杂。
以上就是道尔智控小编解答(而我太傻)贡献关于“人脸识别系统的原理是什么”的答案,接下来继续为你详解用户(一抹浅笑)解答“在人脸识别软件系统识别的过程中,对于人脸检测,现在主流的方法都基本有啥?可以的话详细介绍一下吧。”的一些相关解答,希望能解决你的问题!
在人脸识别软件系统识别的过程中,对于人脸检测,现在主流的方法都基本有啥?可以的话详细介绍一下吧。
热心用户提供:【一抹浅笑】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答 基于知识的方法
基于知识的方法(Knowledge-Based Methods)一是基于规则的人脸检测方法。规则来源于研究者关于人脸的先验知识。一般比较容易提出简单的规则来描述人脸特征和它们的相互关系。
Yang和Huang使用分层的基于知识的人脸检测方法[11]。他们的系统由3级规则组成。在最高级,通过扫描输入图像的窗口和应用每个位置的规则集找到所有可能的人脸候选区。较高级的规则通常描述人脸看起来象什么,而较低级的规则依赖于面部特征的细节。多分辨率的分层图像通过平均和二次采样生成,如图2所示。
编码规则通常在较低的分辨率下确定人脸的候选区,包括人脸的中心部分图中较浅的阴影部分,其中有个基本上相同的灰度单元。
基于特征的方法
基于特征的方法(Feature-Based Methods)不仅可以从已有的面部特征而且可以从它们的几何关系进行人脸检测。和基于知识的方法相反,它是寻找人脸的不变特征用于人脸检测。人们已经提出了许多先检测人脸面部特征,后推断人脸是否存在的方法。面部特征如眉毛、眼睛、鼻子、嘴和发际等,一般利用边缘检测器提取。根据提取的特征,建立统计模型描述特征之间的关系并确定存在的人脸。基于特征的算法存在的问题是,由于光照、噪声和遮挡等使图像特征被严重地破坏,人脸的特征边界被弱化,阴影可能引起很强的边缘,而这些边缘可能使得算法难以使用。
模板匹配的方法
Sakai等人用眼睛、鼻子、嘴和人脸轮廓等子模板建模,检测照片中的正面人脸。每一个子模板按照线分割定义。基于最大梯度变化提取输入图像的线,然后与子模板匹配。计算子图像和轮廓模板之间的相互关系检测人脸的候选区域,完成用其他子模板在候选区域的匹配。
Craw等人提出了一种基于正面人脸的形状模板即人脸的外形定位方法。用Sobel算子提取边缘,将边缘组织在一起,根据几个约束条件去搜索人脸模板。在头轮廓定位。
Govindaraju等人提出两个阶段的人脸检测方法。人脸模型根据边缘定义的特征构成。这些特征描述了正面人脸的左边、发际和右边的曲线。人脸必须是垂直、无遮挡和正面的。
基于外观的方法
基于外观的方法首先通过学习,在大量训练样本集的基础上建立一个能对人脸和非人脸样本进行正确识别的分类器,然后对被检测图像进行全局扫描,用分类器检测扫描到的图像窗口中是否包含人脸,若有则给出人脸所在的位置。
Moghaddam和Pentland提出在高维空间利用特征空间分解密度估计的概率视觉学习方法[12]。用主成分(PCA)分析来定义子空间从而最好地表示人脸模式集。主成分保存数据中主分量而丢弃了那些次分量。这种方法把向量空间分解为互相排斥和互为补充的2个子空间主子空间或特征空间和它的正交子空间。因此对象密度被分解为个2成分在主子空间由主分量张成的密度,和它的垂直成分(在标准的PCA中被丢弃的次分量)如图3所示。用多变量Gaussians和混合Gaussians密度分布进行学习人脸局部特征的统计。然后将这些概率密度用于基于最大
似然估计的对象检测。这种方法已经被用于人脸定位、编码和识别。和传统的特征脸方法相比,此方法在人脸识别方面表现出更好的性能。
可以的话去Ph一下colorreco,技术过硬,值得我们大家学习。
以上就是道尔智控小编解答(一抹浅笑)贡献关于“在人脸识别软件系统识别的过程中,对于人脸检测,现在主流的方法都基本有啥?可以的话详细介绍一下吧。”的答案,接下来继续为你详解用户(げ蟲児飝ざ)解答“3d人脸识别技术有什么用”的一些相关解答,希望能解决你的问题!
3d人脸识别技术有什么用
热心用户提供:【げ蟲児飝ざ】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答人脸识别技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别是指能够识别或验证图像或视频中的主体的身份的技术。首个人脸识别算法诞生于七十年代初 [1,2]。自那以后,它们的准确度已经大幅提升,现在相比于指纹或虹膜识别 [3] 等传统上被认为更加稳健的生物识别方法,人们往往更偏爱人脸识别。
让人脸识别比其它生物识别方法更受欢迎的一大不同之处是人脸识别本质上是非侵入性的。比如,指纹识别需要用户将手指按在传感器上,虹膜识别需要用户与相机靠得很近,语音识别则需要用户大声说话。
相对而言,现代人脸识别系统仅需要用户处于相机的视野内(假设他们与相机的距离也合理)。这使得人脸识别成为了对用户最友好的生物识别方法。
这也意味着人脸识别的潜在应用范围更广,因为它也可被部署在用户不期望与系统合作的环境中,比如监控系统中。人脸识别的其它常见应用还包括访问控制、欺诈检测、身份认证和社交媒体。
扩展资料
最新的人脸识别技术,不仅能够指示性别与估计年龄,还能够辨别个人的面部表情。由于它属于人工智能与深度学习的范畴,随着技术的进一步发展,经解读与分析而得出关涉隐私的信息,可想而知会越来越多。多到足以为任何个人勾勒准确的用户画像。
人们对人脸识别技术的普遍接受,要么是基于一厢情愿的盲目乐观,要么是选择性地无视或低估风险的结果。总而言之,就是在信息匮乏的情况下,做出了有失偏颇的判断。这也正是人脸识别技术一直未成为公共话题的重要原因。
参考资料来源:百度百科-人脸识别技术
以上就是道尔智控小编解答(げ蟲児飝ざ)贡献关于“3d人脸识别技术有什么用”的答案,接下来继续为你详解用户(笑看世俗冷暖)解答“阿里巴巴人脸识别技术是谁发明的”的一些相关解答,希望能解决你的问题!
阿里巴巴人脸识别技术是谁发明的
本文贡献者:【笑看世俗冷暖】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答人脸识别最初在20世纪60年代已经有研究人员开始研究,真正进入初级的应用阶段是在90年代后期,发展至今其技术成熟度已经达到较高的程度。整个发展过程可以分为机械识别、半自动化识别、非接触式识别及互联网应用阶段。
人脸识别技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。
广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。
生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。
功能模块
人脸捕获与跟踪功能
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
人脸识别比对
人脸识别分核实式和搜索式二种比对模式。核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。
人脸的建模与检索
可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。
真人鉴别功能
系统可以识别得出摄像头前的人是一个真正的人还是一幅照片。以此杜绝使用者用照片作假。此项技术需要使用者作脸部表情的配合动作。
图像质量检测
图像质量的好坏直接影响到识别的效果,图像质量的检测功能能对即将进行比对的照片进行图像质量评估,并给出相应的建议值来辅助识别。
上文就是道尔智控小编解疑贡献者:(笑看世俗冷暖)分析的关于“阿里巴巴人脸识别技术是谁发明的”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续评论下文用户【怪瘦】分享的“现在人脸识别最有效的算法”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。
现在人脸识别最有效的算法
本文贡献者:【怪瘦】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答特征脸方法
步骤一:获取包含M张人脸图像的集合S。在我们的例子里有25张人脸图像(虽然是25个不同人的人脸的图像,但是看着怎么不像呢,难道我有脸盲症么),如下图所示哦。每张图像可以转换成一个N维的向量(是的,没错,一个像素一个像素的排成一行就好了,至于是横着还是竖着获取原图像的像素,随你自己,只要前后统一就可以),然后把这M个向量放到一个集合S里,如下式所示。
步骤二:在获取到人脸向量集合S后,计算得到平均图像Ψ ,至于怎么计算平均图像,公式在下面。就是把集合S里面的向量遍历一遍进行累加,然后取平均值。得到的这个Ψ 其实还挺有意思的,Ψ 其实也是一个N维向量,如果再把它还原回图像的形式的话,可以得到如下的“平均脸”,是的没错,还他妈的挺帅啊。那如果你想看一下某计算机学院男生平均下来都长得什么样子,用上面的方法就可以了。
步骤三:计算每张图像和平均图像的差值Φ ,就是用S集合里的每个元素减去步骤二中的平均值。
步骤四:找到M个正交的单位向量un ,这些单位向量其实是用来描述Φ (步骤三中的差值)分布的。un 里面的第k(k=1,2,3.M)个向量uk 是通过下式计算的,
当这个λk(原文里取了个名字叫特征值)取最小的值时,uk 基本就确定了。补充一下,刚才也说了,这M个向量是相互正交而且是单位长度的,所以啦,uk 还要满足下式:
上面的等式使得uk 为单位正交向量。计算上面的uk 其实就是计算如下协方差矩阵的特征向量:
其中
对于一个NxN(比如100x100)维的图像来说,上述直接计算其特征向量计算量实在是太大了(协方差矩阵可以达到10000x10000),所以有了如下的简单计算。
步骤四另解:如果训练图像的数量小于图像的维数比如(M<N^2),那么起作用的特征向量只有M-1个而不是N^2个(因为其他的特征向量对应的特征值为0),所以求解特征向量我们只需要求解一个NxN的矩阵。这个矩阵就是步骤四中的AAT ,我们可以设该矩阵为L,那么L的第m行n列的元素可以表示为:
一旦我们找到了L矩阵的M个特征向量vl,那么协方差矩阵的特征向量ul就可以表示为:
这些特征向量如果还原成像素排列的话,其实还蛮像人脸的,所以称之为特征脸(如下图)。图里有二十五个特征脸,数量上和训练图像相等只是巧合。有论文表明一般的应用40个特征脸已经足够了。论文Eigenface for recognition里只用了7个特征脸来表明实验。
步骤五:识别人脸。OK,终于到这步了,别绕晕啦,上面几步是为了对人脸进行降维找到表征人脸的合适向量的。首先考虑一张新的人脸,我们可以用特征脸对其进行标示:
其中k=1,2.M,对于第k个特征脸uk,上式可以计算其对应的权重,M个权重可以构成一个向量:
perfect,这就是求得的特征脸对人脸的表示了!
那如何对人脸进行识别呢,看下式:
其中Ω代表要判别的人脸,Ωk代表训练集内的某个人脸,两者都是通过特征脸的权重来表示的。式子是对两者求欧式距离,当距离小于阈值时说明要判别的脸和训练集内的第k个脸是同一个人的。当遍历所有训练集都大于阈值时,根据距离值的大小又可分为是新的人脸或者不是人脸的两种情况。根据训练集的不同,阈值设定并不是固定的。
后续会有对PCA理论的补充^_^.已补充理论:特征脸(Eigenface)理论基础-PCA(主成分分析法)
参考资料:
1、Eigenface for Recognition:
2、特征脸维基百科:
3、Eigenface_tutorial:
以上就是道尔智控小编解疑贡献者:(怪瘦)解答的关于“现在人脸识别最有效的算法”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续介绍下文用户【毁我热情】贡献的“人脸识别技术是什么时候发明的”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。
人脸识别技术是什么时候发明的
本文贡献者:【毁我热情】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答人脸识别是基于人的面部特征信息进行身份识别的一种生物识别技术。它通过采集含有人脸的图片或视频流,并在图片中自动检测和跟踪人脸,进而对检测到的人脸进行面部识别。人脸识别可提供图像或视频中的人脸检测定位、人脸属性识别、人脸比对、活体检测等功能。虹软科技在人脸识别方面做的不错
上文就是道尔智控小编解答贡献者:(毁我热情)解答的关于“人脸识别技术是什么时候发明的”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续谈论下文用户【西风】分享的“人脸识别属于什么技术”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。
人脸识别属于什么技术
本文贡献者:【西风】 ,解答(人脸识别系统的特性)的问题,欢迎阅读!
贡献者回答不同品牌机型采用的面部识别技术方案不同,面部识别效果也会不一样;目前vivo/iQOO系列手机,仅NEX双屏版采用3D人脸识别技术,其余机型均采用Face Wake面部识别,通过识别面部特征点,与录入信息进行匹配从而实现解锁。
注:3D人脸识别技术介绍:3D人脸识别技术能实现面部信息的立体捕捉,通过识别面部的立体特征,降低误识别的可能性,可带来更准确安全的识别。
今天的内容先分享到这里了,读完本文(人脸识别系统的特性)人脸识别系统的传统方法的相关解答之后,是否是您想找的答案呢?想要了解更多,敬请关注本站(ask.drzk.cn),您的关注是给小编最大的鼓励。