人生中难免会面对挫折和困难,但是只要我们保持乐观的态度,坚定的信念,就能够跨过障碍。如果你正在关心和担忧人脸脸部识别技术,那么请跟随道尔智控,他将为你提供专业的建议和支持。
一、人脸识别技术小知识有哪些?
人脸识别?技术是指利用分析比较的计算机技术识别人脸。人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。
人脸识别技术属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
请点击输入描述
人脸识别系统的应用特点
1、唯一性:每个人都有一张脸,且无法被复制,仿冒,因此安全性更高。
2、自然性好:人脸识别技术同人类(甚至其它生物)进行个体识别时所利用的生物特征相同,其他生物特征如指纹、虹膜不具备这个特征。
3、简单方便:无需携带卡,识别速度快,操作简单便捷。
4、非接触性:无需接触设备,不用担心病毒的接触性传染,既卫生,又安全。
请点击输入描述
人脸识别技术包含三个部分:
请点击输入描述
(1)人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子空间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人脸跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人脸比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
识别过程
一般分三步:
(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。
(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
技术流程
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
人脸图像预处理
人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机 干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补 偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸图像特征提取
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
人脸图像匹配与识别
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输 出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一 进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
衡量人脸识别的算法能力:拒识率、误识率、通过率,准确率。
二、人脸识别是一种什么样的技术?
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
宝比万像人脸识别门禁系统优势:
非接触性:在人脸识别门禁解决方案中,用户不需要和人脸设备进行任何肢体上的直接接触,刷脸成功即可通行,而能够有效避免细菌疾病通过接触传播,安全卫生。
并发性:人脸识别门禁解决方案突破了传统门禁系统只能进行一对一识别的局限,在不同的实际应用场景可以进行多个人脸分拣、判断及识别。
非强制性:当用户进入人脸识别的摄像范围时,人脸设备将主动获取用户的人脸信息,用户无需携带任何的信息载体,通行更加便捷,同时用户体验更好,接受度更高。
唯一性:人脸信息具有唯一性,人脸识别是活体生物特征识别技术,动态的人脸信息独一无二,难以复制,不存在被盗用的风险,安全性更高。
三、什么是人脸识别技术
什么是人脸识别技术?
随着科技的不断进步,人脸识别技术越来越普及。它是一种能够通过比对和分析人脸图像数据,实现身份鉴别、行为监测、信息记录等功能的技术。人脸识别技术在民生、公共安全等众多领域都得到了广泛应用。
人脸识别技术的基本原理是对人脸图像进行特征提取和模式匹配。首先,将摄像机、手机等设备采集到的人脸图像,进行预处理、分割等操作,将人脸区域分离出来。随后,通过处理算法,提取出人脸图像中的主要特征,如面部轮廓、眼睛、鼻子、嘴巴等,形成人脸的“特征向量”。最后,将采集的人脸“特征向量”与数据库中的样本数据进行比对,从而实现身份鉴别和信息查询。
人脸识别技术的应用领域非常广泛,如在移动支付、门禁管理、考勤签到、机场安检等场景下,可以实现便捷的身份认证。在公安、交通等领域里,人脸识别也被广泛应用。同时,人脸识别技术也被应用在娱乐、美容等领域,例如人脸识别美妆、虚拟形象等应用。
然而,人脸识别技术也存在一些潜在风险。例如,人脸识别技术可能造成隐私泄露等问题。一些监控服务商可能会滥用这项技术,对市民的活动轨迹和隐私进行监控和收集等。应用人脸识别技术时,需要保障个人信息的安全,避免隐私泄露,避免滥用个人信息。
总之,人脸识别技术的应用范围日益广泛,为我们的生活带来诸多便利。但是,我们也需要注意保护个人隐私,避免个人信息被滥用。
通过本文的学习,相信你已经在人脸脸部识别技术这个话题上有了更深刻的理解和认识,也更加清楚应该如何去解决相应的问题。