道尔智控 > 车牌识别 > 车牌识别的原理与流程,车牌识别的思想与步骤

车牌识别的原理与流程,车牌识别的思想与步骤

导读车牌识别系统识别不出我的车牌号贡献用户名:【伴凯终老】 ,现在由道尔智控小编为你分析与【车牌识别的原理与流程】的相关内容!最佳答案为了进行车牌识别,需要以下几个基本...

今天给各位分享车牌识别的原理与流程的知识,其中也会对车牌识别的思想与步骤进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

车牌识别系统识别不出我的车牌号

贡献用户名:【伴凯终老】 ,现在由道尔智控小编为你分析与【车牌识别的原理与流程】的相关内容!

最佳答案为了进行车牌识别,需要以下几个基本的步骤:

1)牌照定位,定位图片中的牌照位置;

2)牌照字符分割,把牌照中的字符分割出来;

3)牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。

车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

以上就是道尔智控小编解答(伴凯终老)回答关于“车牌识别系统识别不出我的车牌号”的答案,接下来继续为你详解用户(丶轻描繁华都市的爱恋)分析“车牌识别系统可以识别临时车牌吗”的一些相关解答,希望能解决你的问题!

车牌识别系统可以识别临时车牌吗

贡献用户名:【丶轻描繁华都市的爱恋】 ,现在由道尔智控小编为你详解与【车牌识别的原理与流程】的相关内容!

最佳答案汽车牌照自动识别技术

它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。

自动识别技术分为硬识别和软识别(其实两者是相辅相成的)

“硬件识别”就是通过独立的硬件设备,对所抓拍图片进行一系列的字符处理;目前停车场系统行业中硬件识别也分为两种,即带有单独的车牌识别仪和前端硬件识别两种。前端硬件识别一体式摄像机是将传统单独的车牌识别仪嵌入至摄像机中,实现前端硬件与摄像机一体化,完美实现图像抓拍、视频流传输、字符识别、道闸抬杆等一系列的工作。

“软件识别”可以理解为通过软件对车牌号码进行的,通过在电脑上安装一个配套的车牌识别软件,对抓拍的图片进行识别处理。其工作方式是通过摄像机连续抓拍多张照片,选择其中较为清晰的一张,然后通过电脑软件进行字符处理,实现车牌识别的。因为每次识别需要抓拍多张照片,因此软识别的较慢。而且软识别系统对所抓拍的图片要求也是极高的,必须极为清晰才能达到想要的效果。该系统对现场环境以及调试质量要求极高,在诸多环境不佳的场合都不适用,并且识别设备的摆放也是非常重要的。

软硬识别的对比:

1、分析识别模式

硬识别系统:采用视频流分析识别,对监控范围内的视频流进行全天候实时分析;

软识别系统:图片分析识别,对到达指定范围内的车辆进行拍照,再对照片进行分析;当车辆位置不佳时,识别易出错。

2、智能算法模型

硬识别系统:采用智能模糊点阵识别算法,准确率更高,识别率大于99.70%。很少需要人工干预。

软识别系统:OCR/字型拓扑结构识别算法,会频繁出现误识别情况,准确率低于90%。需要人工不断输入纠正后的号牌。

3、可靠性及稳定性:

硬识别系统:专用识别器采用TI 公司的高速DSP,双CPU控制,确保系统可靠性和稳定性。

软识别系统:软件识别,容易频繁出现死机等情况,需经常重新启动电脑,造成间断性系统瘫痪。

软硬识别优势互补:

在硬件识别不出来或者硬件识别错误的情况下,启用软识别,完美融合,融合后准确率达99.99%。该技术常用于停车场及小区出入口、高速公路收费站、公路卡口和城市交通。

目前国内比较好的车牌识别厂家有科拓、捷顺、享泊科技、西安艾润、道尔智控。

简单说一下这几家厂商:

【科拓】

1、产品多元化

致力于研发并提供多元全面的智慧停车场应用解决方案,只围绕停车场做业务延伸,公司所能做的停车场业务点覆盖最广

2、硬件品和软件技术

科拓有自己的硬件及软件人才,能独立做硬件及软件,省去中间供应商环节,成本低。

3、停车场行业资历较深

公司始创于2006年,总部位于厦门,在北京、上海、广州等全国重点城市拥有二十多家全资子公司、分公司及办事处,实力雄厚。

【捷顺】

1、公司成立于1992年,上市公司,有政府背景。

2、有资本助力,送设备已名声在外。

3、道闸及软硬件一般,技术能力一般。

【享泊科技】

1、新兴的互联网公司,属于系统集成商,软识别比较厉害。

2、停车场的软件和云平台系统有较大优势,毕竟骨干在华为干了十几年。

3、主要在上海开展业务,其他地方只能去他们官网购买产品,而且不包邮,不包安装(安装要钱)。

【西安艾润物联网技术服务有限责任公司】

1、硬件产品行业内一般化,软件行业知名。

2、软件行业优势(能做到:云服务平台、多车位多车、电子优惠券、定制化开发、对接会员管理系统、报表分析、兼容第三方软件平台)

3、能做无线技术,采用无线路由(有待验证,公司宣传能做)

【深圳市道尔智控科技股份有限公司】

1、上市公司

2、支持运营报表输出(BI分析系统)

3、支持微信、支付宝支付

4、有自己的道儿云开放平台,可定制化开发

5、车牌识别准度一般

上文就是道尔智控小编解答贡献者:(丶轻描繁华都市的爱恋)解答的关于“车牌识别系统可以识别临时车牌吗”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续谈论下文用户【各种姿势各种嗨】解答的“车辆识别系统怎样录入车牌”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

车辆识别系统怎样录入车牌

贡献用户名:【各种姿势各种嗨】 ,现在由道尔智控小编为你探讨与【车牌识别的原理与流程】的相关内容!

最佳答案车牌识别技术(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前最新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市公安局建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。

上文就是道尔智控小编解疑贡献者:(各种姿势各种嗨)回答的关于“车辆识别系统怎样录入车牌”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续介绍下文用户【九九归一】分析的“车牌识别一体机在哪个领域”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

车牌识别一体机在哪个领域

贡献用户名:【九九归一】 ,现在由道尔智控小编为你详解与【车牌识别的原理与流程】的相关内容!

最佳答案车牌识别系统通常会经过下列步骤完成识别输出的工作:

车辆检测:可采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式感知车辆的经过,并触发图像采集抓拍。

图像采集:通过高清摄像抓拍主机对通行车辆进行实时、不间断记录、采集。

预处理:噪声过滤、自动白平衡、自动曝光以及伽马校正、边缘增强、对比度调整等。

车牌定位:在经过图像预处理之后的灰度图像上进行行列扫描,确定车牌区域。

字符分割:在图像中定位出车牌区域后,通过灰度化、二值化等处理,精确定位字符区域,然后根据字符尺寸特征进行字符分割。

字符识别:对分割后的字符进行缩放、特征提取,与字符数据库模板中的标准字符表达形式进行匹配判别。

结果输出:将车牌识别的结果以文本格式输出。文通的车牌识别产品包含软识别、硬识别,识别效果很不错

以上就是道尔智控小编解答(九九归一)贡献关于“车牌识别一体机在哪个领域”的答案,接下来继续为你详解用户(ゆ柚子。)解答“怎么识别汽车牌照”的一些相关解答,希望能解决你的问题!

怎么识别汽车牌照

贡献用户名:【ゆ柚子。】 ,现在由道尔智控小编为你分析与【车牌识别的原理与流程】的相关内容!

最佳答案汽车牌照识别是基于图像分割和图像识别理论,对含有汽车牌照的图像进行分析处理,从而确定汽车牌照在图像中的位置,并进一步提取和识别出文本字符。从不同车牌图像中分割出的字符图像各式各样,尺寸变化范围大,增加了识别的难度。尽管可以采用图像变换方法将分割出的所有字符图像归一化为相同尺寸,但归一化过程又不可避免地丢失有用的字符信息,造成图像失真,无助于提高识别准确率,并且浪费时间,降低了识别。

本文通过分析汽车牌照的特点,提出了一种利用字符的笔画特征和结构知识对汽车牌照中的字母和数字进行识别的方法。试验表明,该方法识别快、准确率高,不受字符图像大小影响,适应性强。

1车牌字符结构和识别

中国大陆汽车牌照中使用的字符包括59个汉字、25个英文字母(字母I不用)和10个阿拉伯数字三种类型共94个,且都是印刷体,结构固定、笔画规范。图1是车牌号码中使用的全部字母和数字的图像。这些字符的结构在水平方向有三种类型:左右对称、左大右小、左小右大。在竖直方向同样有三种结构,即上下对称、上大下小、上小下大。如车牌号码中使用的数字"8",就属于左右对称且上下对称。

从图1可以看出,全部字母和数字的笔画共有两大类:直笔画和弧笔画。直笔画又可分为横笔画、竖笔画、左斜笔画(相当于汉字笔画中的"撇")和右斜笔画(相当于汉字笔画中的"捺")。弧笔画是一条曲线段,本文将其分为两类:开弧笔画和闭弧笔画。所谓开弧笔画,指该弧笔画没有形成封闭环,如字母"C"。而闭弧笔画则形成一个封闭的环,如数字"0"。

根据字符图像的这一特点,本文采用下述方法对字母和数字进行逐级分类,形成一棵识别判定树,每个字符就是一个叶子:

(1)首先在待识别的字符图像中搜索封闭环的数量和位置。

(2)根据搜索到封闭环的结果判断字符所在的类封闭环字符类、双封闭环字符类、无封闭环字符类。 (3)针对每一类分别进行处理。

(4)双封闭环字符只有"8"和"B",因此只要抽取竖笔画即可区分出这两个字符。"B"的左半部分有一长竖,而"8"没有。

(5)单封闭环的字符有"A"、"D"、"O"、"P"、"Q"、"R"、"0"、"4"、"6"和"9"。根据封闭环的位置将这些字符分成三类:封闭环在上部;封闭环在下部和封闭环在中间,然后再根据结构特点和抽取的笔画特征进行识别。

.封闭环在上部的字符有"P"、"R"和"9"。如果待识别字符图像上半部分有一个封闭环,则从左半部分抽取竖笔画;若左侧部分没有竖笔画,则该字符为"9";若在左半部分抽取到竖笔画,继续抽取右斜笔画;抽取到右斜笔画,该字符为"R";否则为"P"。

.封闭环在下部的字符有"A"、"4"和"6"。如果待识别字符图像下半部分有一个封闭环,则从右半部分抽取竖笔画;若右侧部分有竖笔画,则该字符为"4";若在右半部分没有抽取到竖笔画,继续抽取横笔画;抽取到横笔画,该字符为"A";否则为"6"。

.封闭环在中间的字符有"D"、"O"、"Q"和"0"。实际应用中,"O"和"0"的图像完全相同,可以作为同一个字符处理。如果待识别字符图像中间有一个封闭环,则首先利用上下对称特点判断是否为"Q";若上下对称,则为"0"("O")或"D";然后按照左右对称特征区分字符"0"和"D"。

(6)无封闭环的字符有"C"、"E"、"F"、"C"、"H"、"J"、"K"、"L"、"M"、"N"、"S"、"T"、"U"、"V"、"W"、"X"、"Y"、"Z"、"l"、"2"、"3"、"5"和"7",通过抽取笔画对这些字符进行识别,具体步骤如下:

· 抽取横笔画和竖笔画。

· 若待识别字符图像没有横笔画和竖笔画,则该字符为"S"、"V"或"X"。

· 若待识别字符图像只有横笔画而没有竖笔画,则该字符为"2"、"3"、"7"或"Z"。

· 若待识别字符图像只有竖笔画而没有横笔画,则该字符为"1"、"C"、"J"、"K"、"M"、"N"、"U"、"W''或"Y"。

· 待识别字符图像既有横笔画又有竖笔画的字符为"5"、"E"、"F"、"C"、"H"、"l"或"T"。

."S"、"V"和"X"的识别。抽取左斜笔画和右斜笔画,"S"没有这两种笔画,从而可识别出"S"。"X"的两条斜笔画交点位于字符图像的中间位置,而"V"的两条斜笔画相交于字符图像的下部,以此识别"X"和"V"。

· 识别2"、"3"、"7"和"Z"。这四个字符中只有"Z"有两条横笔画,从而可以此识别出"Z"。"3"和"7"的横笔画都位于上部,而"2"的横笔画位于下部,这样又可以识别出"2"。对于"3"和"7",利用左斜笔画进行识别。"7"具有左斜笔画,而"3"没有。

·识别"1"、"C"、"J"、"K"、"M"、"N"、"U"、"W"和"Y"。根据竖笔画的数量将这些字符分为三类,"1"、 "C"、"J"、"K"和"Y"都是一条竖笔画、"M"、"N"和"U"是两条竖笔画,而"W"有三条竖笔画,这样就完成了"W"的识别。

对于一条竖笔画的字符,判断该笔画的位置是在左边("C"和"K")、中间("1"和"Y")还是在右边("J"),即可识别出"厂。根据有无右斜笔画区分"C"和"K",按照中间竖笔画的长短区分"1"和"Y"。

.由于字符"N"有一右斜笔画,以此将其从"M"和"U"中识别出来。对于"M"和"U",依靠结构特征已无法识别,本文使用字符图像中前景像素个数与背景像素个数的比值来判断。根据这两个字符的特点,只计算字符上半部分即可。 · 识别"5"、"E"、"F"、"G"、"H"、"I"和"T"。这些字符中,只有"E"具有三条横笔画,"F"有两条横笔画,其余为一条横笔画。剩下的字符中,按照竖笔画的数量分为两组: "5"、"L"和"T"为一条竖笔画,"G"和"H"为两条竖笔画。"H"的两条竖笔画长度相同,而"G"的两条竖笔画则一长一短,这是区分"G"和"H"的标志。"T"的竖笔画在中间,"5"和"L"的竖笔画在左边。"L"的竖笔画长,"5"的竖笔画短,这样就完成了"5"、"T"和"L"的识别。

搜索封闭环实际上就是在字符图像中搜索连通域。在字符的二值图像中,假定字符像素值"1",背景像素值为"0",则:

(1)无封闭环的字符图像中只有两个连通域,即字符连通域和背景连通域,图2(a)中的B和F。

(2)只有一个封闭环的字符图像中有三个连通域,即一个字符连通域和两个背景连通域,图2(c)中的B1、B2和F。

(3)有两个封闭环的字符图像中有四个连通域,即一个字符连通域和三个背景连通域,图2(b)中的B1she、B2、B3和F。

搜索封闭环的算法如下:

(1)读入二值字符图像。

(2)找到一个像素值为"0"的背景像素点B。

(3)搜索B的连通域,并将该连通域内的像素全部标记为背景1。

(4)遍历图像中像素值为"0"的像素。

(5)若所有"0"像素都已标记为背景1,则该图像内封闭环个数为0,跳转到(11)。

(6)若存在没有标记为背景1的"0"像素点B1,则有封闭环。

(7)搜索B1的连通域,并将该连通域内的像素全部标记为背景2。

(8)遍历图像中像素值为"0"的像素。

(9)若所有"0"像素都已标记为背景1或背景2该图像内封闭环个数为1,跳转到(11)。

(10)若存在没有标记为背景1或背景2的"0"像素,则该图像内封闭环个数为2。

(11)结束搜索,返回封闭环个数。

字符的笔画抽取可参见文献[1]

2识别测试

利用本识别方法,笔者对从车牌中分割出的字符进行了识别测试。所测试的字符包括了车牌中所使用的全部35个数字和字母共7000幅图像,其中图幅最大的为l00xl00像素,而最小的是20x20像素。正确识别的有6946幅,正确率超过99%。其中识别错误的图像主要集中在字母"0"和"D"。通过对这些容易识别错误的字符进行二次识别,可以大大提高识别准确率

本文提出的字符识别方法的核心就是通过判定树对字符群体层层分类,从树干开始逐步缩小识别范围,直到最后只有一类字符,即识别成功。

该方法具有如下特点:

(1)不需要建立识别样本库,完全依据字符自身的结构特征进行逼近识别。

(2)不需要将待识别字符与全部字符进行匹配识别,因而提高了识别和准确率。

以上就是道尔智控小编分享贡献者:(ゆ柚子。)分析的关于“怎么识别汽车牌照”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,现在接着继续评论下文用户【诚長】分析的“手机也能用的移动端车牌识别技术”的一些相关疑点做出分析与解答,如果能找到你的答案,可以关注本站。

手机也能用的移动端车牌识别技术

贡献用户名:【诚長】 ,现在由道尔智控小编为你详解与【车牌识别的原理与流程】的相关内容!

最佳答案移动端车牌识别步骤概括为:车牌定位、车牌提取、字符识别。三个步骤地识别工作相辅相成,各自的有效率都较高,整体的识别率才会提高。车牌识别的快慢取决于字符识别,字符的识别目前的主要应用技术为比对识别样本库,即将所有的字符建立样本库,字符提取后通过比对样本库实现字符的判断,识别过程中将产生可信度、倾斜度等中间结果值;另一种是基于字符结构知识的字符识别技术,更加有效的提高识别速率和准确率,适应性较强。

一:移动端车牌识别SDK特点:

1、前端车牌识别快、准、稳:

“只需要使用相机扫一扫,视频浏览模式快速识别车牌”和扫描二维码一样快速准确的识别车牌。

2、移动端车牌识别准确对超大角度车牌进行识别。

3、支持Android、ios双平台应用:

支持手机ARM平台和PDA的X86架构

二:移动端车牌识别SDK配置要求

1、操作系统:支持Android 4.0,ios7.0

2、硬件配置:推荐ARM Cortex-A7,1G RAM

3、摄像头:支持自动对焦,200万像素

4、安装程序占用空间,2MBytes

三:典型应用

1、警务通:巡逻执勤、交警执法

2、车辆保险:车险移动查勘

3、占道停车管理:占道停车收费

4、移动电子警察

移动端车牌识别更是势在必行,并且这也是切实需要的解决方法。

如需测试请百度搜索“图像识别郭有林”获取联系测试;

以上就是道尔智控小编解答(诚長)解答关于“手机也能用的移动端车牌识别技术”的答案,接下来继续为你详解用户(一别两宽)回答“车牌识别抬杆原理”的一些相关解答,希望能解决你的问题!

车牌识别抬杆原理

贡献用户名:【一别两宽】 ,现在由道尔智控小编为你讲解与【车牌识别的原理与流程】的相关内容!

最佳答案为了进行车牌识别,需要以下几个基本的步骤:

1)牌照定位,定位图片中的牌照位置;

2)牌照字符分割,把牌照中的字符分割出来;

3)牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。

车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

以上就是道尔智控小编解答(一别两宽)解答关于“车牌识别抬杆原理”的答案,接下来继续为你详解用户(小仙女)回答“ocr车牌识别技术介绍”的一些相关解答,希望能解决你的问题!

ocr车牌识别技术介绍

贡献用户名:【小仙女】 ,现在由道尔智控小编为你讲解与【车牌识别的原理与流程】的相关内容!

最佳答案第七篇:字符特征

选择的字符特征应该满足以下条件:

(1)选取的字符特征具有较强的鲁棒性,不受字符变形、弯曲等影响。

(2)两个字符的字符特征不能完全相同,但部分相同是允许的,即选择的字符特征是唯一的,但是不能重复。

(3)选取的字符特征要尽可能的提供字符的信息。

(4)选择的字符特征提取方法易于实现,能够减少计算时间。

一般采用 纹理、边缘特征 。纹理特征是表示图像的另一种重要的视觉特征,纹理结构反映图像亮度的空间变化情况,具有局部与整体的自相似性。纹理是有纹理基元按某种确定性的规律或某种统计规律排列组成的,在纹理区域内各部分具有大致相同的结构。

提取特征的的方法:

(1)逐像素特征提取是指对整幅二值图像进行扫描,若图像中的像素点为黑色像素点时,则令特征值为 1,否则特征值为 0。经过该方法提取的特征向量的维数与图像中的像素点的个数相同。

(2)骨架特征提取是先细化字符图像,然后从细化后的字符图像中逐像素地提取特征。

此方法适用不同大小的字符。

(3)垂直方法数据统计特征提取是首先对字符图像进行水平投影,统计水平投影值,此处的水平投影值为黑色像素的数目;然后通过对字符图像进行垂直投影,统计垂直投影值,此处的垂直投影值仍为黑色像素的个数;最后将水平和垂直投影值作为字符的特征向量。

(4)13 点特征提取方法的总体思路是:首先把字符平均分成 8 份,统计每一份黑色

像素点的个数作为 8 个特征。分别统计这 8 个区域中的黑色像素的数目,就可以得到 8 个特征;然后统计水平方向中间两行和垂直方向中间两列的黑色像素点的个数作为 4 个特征;最后统计所有黑色像素点的个数作为 13 个特征。

常用的特征求取:

一、粗网格特征:

将归一化后的字符图像等分成 8×8 网格,统计各网格内黑像素的数量,取得一个 64 维的网格特征。

外围特征:提取字符外围特征的步骤为:

① 把归一化后的点阵图形等分为 8 行。

② 计算每一行中点从图像左边缘至第一项由白变黑的长度(如果没有由白变黑的点,则默认为零)。

③ 再计算每一行中点从图像左边缘至第二项由白变黑的长度(如果没有由白变黑的点,则默认为零)。

④ 仿照上面 3 个步骤,提取其它 3 个边缘的特征。

采用上述方法可以提取另一个 4×2×8=64 维的外围特征。

通过采用基于像素数量的粗网格特征与外围特征相结合方法可以提取字符的128 维特征,用以字符识别。

​二、PCA进行汉字识别,网格特征进行数字和字母的提取。

网格特征是指通过把二值化后的字符分成M×N个网格,统计每一个网格中的字符像素数量,把各个网格中的像素数量组合起来作为字符的网格特征来识别字符。字母数字相对于汉字来说笔画简单,也极少出现字符轮廓模糊的现象。因此,字母数字的识别相对来说比较简单。但是,字母数字之间存在相似字符的比例较高,而且相似字符之间的差异又比较小,很容易识别错。对字母数字的识别论文采用了二次识别的思想。

三、均匀网格特征

统计黑像素点在每个网格中所占的比例,属于统计特征中局部特征的一种,体现了文字点阵的整体形状的分布。它将字符图像二值化以后,再把样本字符图像分成mxn个M格,并统计每个网格中属于文字点阵的像数量,记为i;统计整个图像巾屈于文字点阵的像素数量,记为j;计算各个网格中的文字点阵的像素数量整个像中文字点阵的像素数量之比P=i/j将每个网格统汁的百分比P组合起来作为字符的统计特征,用以实现对字符的识别。好个网格屮的文字点阵比例反映了文字笔画在二维平面空间的分布特征。

网格特征的统计是以网格为单位进行的,即使个别像素点的统计有误差也不会对识别结果造成很大的影响,该特征还具有较强的区分相似字符的能力。此特征提取算法比较简单,计算速率很快,且易于实现,但其对字符图像配准要求较高,故需要在提取字符图像的特征之前,对图像进行去边框等预处理操作。此算法更适合印刷体等较规则的字体,而不适用于手写体。

四、LBP特征进行汉字识别

预处理模块对图像进行归一化操作;第二个模块计算出图像中每个像素点的LBP值;第三个模块用于将图像平均分割为MxN个网格;最后一个模块用于计算各块的LBP特征。

1、传统的LBP算法是基于3 X 3的窗口的,对应于9个灰度值。将该窗口的8邻域的灰度值与中心像素的灰度值比较,小于中心灰度值的像素点的置为0,反之将其置为1;然后,通过逆吋针或者顺时针将这8个二进制数转化为一个二进制序列,并求出其对应的十进制值,作为这个3X3窗口的中心像素点的特征值。即各像素点的LBP值。

2、将每个像素点的LBP值齐代它的灰度值,得到LBP阁像。并将LBP图像分块,对每个分块进行直方图统计。如,将LBP图像分为4*8块,每块大小为8*8。在每个分块内,将0-255的LBP值量化为32级,并进行直方图统计。即每个分块的LBP特征为32维。

3、将各个小块的LBP特征连起来,获得(4*8)*32=1024维的一个矢量,该矢量即为字符图像的LBP特征。

改进的LBP特征:

均匀模式:它们有一个共同点,即在LBP二值编码序列巾,最多有两个0到1或1到0的变化。LBP二值编码序列为11000001,从1到0的变化为1次,从0到1的变化为1次,即它的均匀性U(LBP)=2。满足U(LBP)<=2的所有模式称为均匀模式。在8邻域中,满足U(LBP)<=2的所有模式的个数为8*(8-1)+2,具体的LBP二值编码序列与i/(Z及TMH]对应图见图2-16。再进一步将它们旋转到最小值后,具有旋转不变性的均勾模式(Rotation Invariant Uniform Pattern)的个数则为8+1。

模式对应的LBP二进制中从0变化为1和从1变化为0的次数之和小于等于两次,则该模式就是均匀模式。再根据顺时针或逆时针方向读出8个二进制数作为一个二进制序列,计算其对应的十进制值,作为该3X 3矩形的中心元的特征值。反之,则该模式就不是均匀模式,它们的LBP值均为8+1。

由于改进的LBP特征是用58种均匀模式和统一后的一种非均匀模式来表示的。即在每个分块内,将0-255的LBP倍转化为59级。将这59级量化到0-63、64-127、128-191、192-255这四个区间中,并进行直方图统计。即每个分块的LBP特征为4维。

将各个小块的LBP特征连起来,获得(4*8) *4=128维的一个矢量,矢量即为字符图像的LBP特征。均匀模式时的LBP特征向量维数=图像分块数*59,改进的LBP特征向量维数=图像分块数*4,大大地提高了识别速率。

以上就是道尔智控小编解答贡献者:(小仙女)贡献的关于“ocr车牌识别技术介绍”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续评论下文用户【别低贱了自我】解答的“stm32车牌识别算法源代码”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。

stm32车牌识别算法源代码

贡献用户名:【别低贱了自我】 ,现在由道尔智控小编为你分析与【车牌识别的原理与流程】的相关内容!

最佳答案建议使用matlab,网上搜搜国外有一些demo程序。

---。安.视.宝。---

车辆自动识别是建立在图像对比组件的基础上,利用摄像机拍摄车辆运行动态视频,然后采用先进的神经网络算法和模糊算法相结合,通过对视频流的采集和处理,完成车牌自动识别,自动进行车牌号码比较,并以文本的格式与进出场数据进行打包保存。

原理介绍:车辆自动识别系统对摄像机抓拍到的每帧图像都识别,并自动找到最佳识别效果的图像,应用这种方法可以很好地提高抓拍率、识别率,并且能够降低工程的施工难度。立林智能网络车牌自动识别正是基于这一思想,采用专有的技术,利用高速的识别算法核心对视频流进行逐帧的识别,即对单个车辆进行了多次识别,从而有效克服了现有车辆识别技术存在的许多缺陷。使用连续多帧识别,从工程的角度看,比单帧识别成功的机率要高很多,这是因为连续抓拍的图像的角度、光照不同,识别效果也不尽相同,从理论上讲,只要有一帧足够清晰的图像就有一个好的识别结果。立林智能网络车牌自动识别还采用先进的目标跟踪,以及识别结果最佳化等方法,来确保从车流中一个一个地甄别出序列化的车牌。

要实现对视频流逐帧识别,必须采用行之有效的高速识别算法,即神经网络算法和模糊算法相结合,否则无法达到实用的效果。对于常用的768×288高分辨率图像,立林智能网络车牌自动识别可以在3到10毫秒内完成全部的识别过程,并且在多个应用中实施了单台计算机多路的实时识别方案。

今天的内容先分享到这里了,读完本文车牌识别的原理与流程,车牌识别的思想与步骤的相关解答之后,是否是您想找的答案呢?想要了解更多,敬请关注本站(ask.drzk.cn),您的关注是给小编最大的鼓励。

本文来自网络,不代表本站立场,转载请注明出处:http://ask.drzk.cn/cpsb/9079.html

作者: 道尔智控

道尔智控致力于智慧停车生态化建设,涵盖停车场管理系统、智慧停车系统、停车场系统、车牌识别 、门禁系统、道闸、通道闸、车位引导系统、云停车等。同时又为用户提供各种关于车牌、车型识别停车、停车场系统、通道道闸机等技术小知识,让您停车更智能、更简单、更便捷。
上一篇:(小区车牌识别出口安防)小区门禁自动车牌识别系统厂家
下一篇:(识别车牌道闸)识别车牌道闸系统接线视频
联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱:drzk@drzk.cn

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部