道尔智控 > 车牌识别 > (车牌图像)车牌图像

(车牌图像)车牌图像

导读广东省车牌自动识别推荐本文最佳回答用户:【习惯转身】 ,现在由道尔智控小编为你分析与【车牌图像】的相关内容!最佳回答晚上不识别,第一要确定识别相机是否正常,光圈焦距...

今天道尔智控就给我们广大朋友来聊聊车牌图像,以下9个关于车牌图像的观点希望能帮助到您找到想要的答案。

广东省车牌自动识别推荐

本文最佳回答用户:【习惯转身】 ,现在由道尔智控小编为你分析与【车牌图像】的相关内容!

最佳回答晚上不识别,第一要确定识别相机是否正常,光圈焦距是否调到合理,补光灯是否补光到位主要产生可能是这些原因。

车牌识别系统(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。

车牌识别技术

结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。

在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。

以上就是道尔智控小编解答(习惯转身)分析关于“广东省车牌自动识别推荐”的答案,接下来继续为你详解用户(尨嘯★艽迗)贡献“部队汽车牌照识别”的一些相关解答,希望能解决你的问题!

广东省车牌自动识别推荐

部队汽车牌照识别

本文最佳回答用户:【尨嘯★艽迗】 ,现在由道尔智控小编为你探讨与【车牌图像】的相关内容!

最佳回答汽车牌照识别是基于图像分割和图像识别理论,对含有汽车牌照的图像进行分析处理,从而确定汽车牌照在图像中的位置,并进一步提取和识别出文本字符。从不同车牌图像中分割出的字符图像各式各样,尺寸变化范围大,增加了识别的难度。尽管可以采用图像变换方法将分割出的所有字符图像归一化为相同尺寸,但归一化过程又不可避免地丢失有用的字符信息,造成图像失真,无助于提高识别准确率,并且浪费时间,降低了识别。

本文通过分析汽车牌照的特点,提出了一种利用字符的笔画特征和结构知识对汽车牌照中的字母和数字进行识别的方法。试验表明,该方法识别快、准确率高,不受字符图像大小影响,适应性强。

1车牌字符结构和识别

中国大陆汽车牌照中使用的字符包括59个汉字、25个英文字母(字母I不用)和10个阿拉伯数字三种类型共94个,且都是印刷体,结构固定、笔画规范。图1是车牌号码中使用的全部字母和数字的图像。这些字符的结构在水平方向有三种类型:左右对称、左大右小、左小右大。在竖直方向同样有三种结构,即上下对称、上大下小、上小下大。如车牌号码中使用的数字"8",就属于左右对称且上下对称。

从图1可以看出,全部字母和数字的笔画共有两大类:直笔画和弧笔画。直笔画又可分为横笔画、竖笔画、左斜笔画(相当于汉字笔画中的"撇")和右斜笔画(相当于汉字笔画中的"捺")。弧笔画是一条曲线段,本文将其分为两类:开弧笔画和闭弧笔画。所谓开弧笔画,指该弧笔画没有形成封闭环,如字母"C"。而闭弧笔画则形成一个封闭的环,如数字"0"。

根据字符图像的这一特点,本文采用下述方法对字母和数字进行逐级分类,形成一棵识别判定树,每个字符就是一个叶子:

(1)首先在待识别的字符图像中搜索封闭环的数量和位置。

(2)根据搜索到封闭环的结果判断字符所在的类封闭环字符类、双封闭环字符类、无封闭环字符类。 (3)针对每一类分别进行处理。

(4)双封闭环字符只有"8"和"B",因此只要抽取竖笔画即可区分出这两个字符。"B"的左半部分有一长竖,而"8"没有。

(5)单封闭环的字符有"A"、"D"、"O"、"P"、"Q"、"R"、"0"、"4"、"6"和"9"。根据封闭环的位置将这些字符分成三类:封闭环在上部;封闭环在下部和封闭环在中间,然后再根据结构特点和抽取的笔画特征进行识别。

.封闭环在上部的字符有"P"、"R"和"9"。如果待识别字符图像上半部分有一个封闭环,则从左半部分抽取竖笔画;若左侧部分没有竖笔画,则该字符为"9";若在左半部分抽取到竖笔画,继续抽取右斜笔画;抽取到右斜笔画,该字符为"R";否则为"P"。

.封闭环在下部的字符有"A"、"4"和"6"。如果待识别字符图像下半部分有一个封闭环,则从右半部分抽取竖笔画;若右侧部分有竖笔画,则该字符为"4";若在右半部分没有抽取到竖笔画,继续抽取横笔画;抽取到横笔画,该字符为"A";否则为"6"。

.封闭环在中间的字符有"D"、"O"、"Q"和"0"。实际应用中,"O"和"0"的图像完全相同,可以作为同一个字符处理。如果待识别字符图像中间有一个封闭环,则首先利用上下对称特点判断是否为"Q";若上下对称,则为"0"("O")或"D";然后按照左右对称特征区分字符"0"和"D"。

(6)无封闭环的字符有"C"、"E"、"F"、"C"、"H"、"J"、"K"、"L"、"M"、"N"、"S"、"T"、"U"、"V"、"W"、"X"、"Y"、"Z"、"l"、"2"、"3"、"5"和"7",通过抽取笔画对这些字符进行识别,具体步骤如下:

· 抽取横笔画和竖笔画。

· 若待识别字符图像没有横笔画和竖笔画,则该字符为"S"、"V"或"X"。

· 若待识别字符图像只有横笔画而没有竖笔画,则该字符为"2"、"3"、"7"或"Z"。

· 若待识别字符图像只有竖笔画而没有横笔画,则该字符为"1"、"C"、"J"、"K"、"M"、"N"、"U"、"W''或"Y"。

· 待识别字符图像既有横笔画又有竖笔画的字符为"5"、"E"、"F"、"C"、"H"、"l"或"T"。

."S"、"V"和"X"的识别。抽取左斜笔画和右斜笔画,"S"没有这两种笔画,从而可识别出"S"。"X"的两条斜笔画交点位于字符图像的中间位置,而"V"的两条斜笔画相交于字符图像的下部,以此识别"X"和"V"。

· 识别2"、"3"、"7"和"Z"。这四个字符中只有"Z"有两条横笔画,从而可以此识别出"Z"。"3"和"7"的横笔画都位于上部,而"2"的横笔画位于下部,这样又可以识别出"2"。对于"3"和"7",利用左斜笔画进行识别。"7"具有左斜笔画,而"3"没有。

·识别"1"、"C"、"J"、"K"、"M"、"N"、"U"、"W"和"Y"。根据竖笔画的数量将这些字符分为三类,"1"、 "C"、"J"、"K"和"Y"都是一条竖笔画、"M"、"N"和"U"是两条竖笔画,而"W"有三条竖笔画,这样就完成了"W"的识别。

对于一条竖笔画的字符,判断该笔画的位置是在左边("C"和"K")、中间("1"和"Y")还是在右边("J"),即可识别出"厂。根据有无右斜笔画区分"C"和"K",按照中间竖笔画的长短区分"1"和"Y"。

.由于字符"N"有一右斜笔画,以此将其从"M"和"U"中识别出来。对于"M"和"U",依靠结构特征已无法识别,本文使用字符图像中前景像素个数与背景像素个数的比值来判断。根据这两个字符的特点,只计算字符上半部分即可。 · 识别"5"、"E"、"F"、"G"、"H"、"I"和"T"。这些字符中,只有"E"具有三条横笔画,"F"有两条横笔画,其余为一条横笔画。剩下的字符中,按照竖笔画的数量分为两组: "5"、"L"和"T"为一条竖笔画,"G"和"H"为两条竖笔画。"H"的两条竖笔画长度相同,而"G"的两条竖笔画则一长一短,这是区分"G"和"H"的标志。"T"的竖笔画在中间,"5"和"L"的竖笔画在左边。"L"的竖笔画长,"5"的竖笔画短,这样就完成了"5"、"T"和"L"的识别。

搜索封闭环实际上就是在字符图像中搜索连通域。在字符的二值图像中,假定字符像素值"1",背景像素值为"0",则:

(1)无封闭环的字符图像中只有两个连通域,即字符连通域和背景连通域,图2(a)中的B和F。

(2)只有一个封闭环的字符图像中有三个连通域,即一个字符连通域和两个背景连通域,图2(c)中的B1、B2和F。

(3)有两个封闭环的字符图像中有四个连通域,即一个字符连通域和三个背景连通域,图2(b)中的B1she、B2、B3和F。

搜索封闭环的算法如下:

(1)读入二值字符图像。

(2)找到一个像素值为"0"的背景像素点B。

(3)搜索B的连通域,并将该连通域内的像素全部标记为背景1。

(4)遍历图像中像素值为"0"的像素。

(5)若所有"0"像素都已标记为背景1,则该图像内封闭环个数为0,跳转到(11)。

(6)若存在没有标记为背景1的"0"像素点B1,则有封闭环。

(7)搜索B1的连通域,并将该连通域内的像素全部标记为背景2。

(8)遍历图像中像素值为"0"的像素。

(9)若所有"0"像素都已标记为背景1或背景2该图像内封闭环个数为1,跳转到(11)。

(10)若存在没有标记为背景1或背景2的"0"像素,则该图像内封闭环个数为2。

(11)结束搜索,返回封闭环个数。

字符的笔画抽取可参见文献[1]

2识别测试

利用本识别方法,笔者对从车牌中分割出的字符进行了识别测试。所测试的字符包括了车牌中所使用的全部35个数字和字母共7000幅图像,其中图幅最大的为l00xl00像素,而最小的是20x20像素。正确识别的有6946幅,正确率超过99%。其中识别错误的图像主要集中在字母"0"和"D"。通过对这些容易识别错误的字符进行二次识别,可以大大提高识别准确率

本文提出的字符识别方法的核心就是通过判定树对字符群体层层分类,从树干开始逐步缩小识别范围,直到最后只有一类字符,即识别成功。

该方法具有如下特点:

(1)不需要建立识别样本库,完全依据字符自身的结构特征进行逼近识别。

(2)不需要将待识别字符与全部字符进行匹配识别,因而提高了识别和准确率。

以上就是道尔智控小编解答(尨嘯★艽迗)回答关于“部队汽车牌照识别”的答案,接下来继续为你详解用户(苍半凉)贡献“车牌识别程序里qiege里面填什么”的一些相关解答,希望能解决你的问题!

车牌识别程序里qiege里面填什么

本文最佳回答用户:【苍半凉】 ,现在由道尔智控小编为你分析与【车牌图像】的相关内容!

最佳回答汽车牌照自动识别技术是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别.其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一、车牌识别技术流程剖解

车牌识别作为交通监控的核心技术,应用在多项子系统中,如闯红灯监测系统、超速监测系统、逆行监测系统、禁行监测系统、公交车道监测系统、非机动车道行车监测系统、压双黄线监测系统、紧急停车带行车监测系统、移动式车辆稽查系统等等。智能化多媒体网络车牌识别系统广泛应用在过往车辆自动登记、验证,公路收费,车辆安全核查,小区、停车场管理等方面。

系统采用视频实时触发方式进行检测抓拍,能够自动侦测、准确识别及验证行驶或停泊中车辆的整车车牌号码。可对已抓拍图像与数据库资料及时进行比对,当发现应拦截车辆时,系统能在本地机和中心机上及时报警。系统采用先进的模糊图像处理技术,通过程序能很好的实现对于车牌的整体倾斜、车牌的文字倾斜、车牌的污损和模糊等的处理,将人眼都很难辨别的车牌号识别出来。

优位停车车牌识别的流程可分为车牌定位、车牌预处理、字符分割和字符识别四个步骤。

二、系统实现功能和技术特点

准确识别不同地区及各种类型的车牌号码。

采用图像自动触发方式,不需要其他外在触发机制。

自动完成车辆记数,车流量统计。

对已抓拍图像能与数据库资料及时进行比对,当发现应拦截车辆时,在本地机和中心机上及时。

内置的数据库管理软件能存储、搜索及整理车辆资料,能自动备份数据并完成统计报告。

在网络的环境下实现各地的数据同步,可实时监控前端系统的运行状况。

对运动在180公里/小时以下的汽车车牌进行自动识别。

在良好光照条件下,车牌识别率不低于96%,在阴雨天、夜间人工光照条件下,车牌识别率不低于90%。系统能够识别的车牌类型包括:普通民用汽车车牌、军用汽车车牌(含武警车牌)、警用汽车车牌系统能够识别车辆类型,绘制出车辆的三维图像。

抓拍图像的时间小于0.03秒,识别图像的时间小于0.2秒。

系统适应全天候条件下工作。

三、停车场车牌识别应用

一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。

(一)车辆检测

车辆检测可以采用埋地线圈检测、红外检测、雷达检测、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。

具备视频车辆检测功能的牌照识别系统,首先对视频信号中的一帧(场)的信号进行图像采集,数字化,得到对应的数字图像;然后对其进行分析,判断其中是否有车辆;若认为有车辆通行,则进入到下一步进行牌照识别;否则继续采集视频信号,进行处理。

系统进行视频车辆检测,需要具备很高的处理并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理慢,则导致丢帧,使系统无法正确检测到行驶较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。

(二)牌照号码、颜色识别

为了进行牌照识别,需要以下几个基本的步骤:

牌照定位,定位图片中的牌照位置;

牌照字符分割,把牌照中的字符分割出来;

牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。

牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。

1、牌照定位

自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。

2、牌照字符分割

完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。

3、牌照字符识别

字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。

实际应用中,牌照识别系统的识别率与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆等等因素的影响。这些影响因素不同程度上降低了牌照识别的识别率,也正是牌照识别系统的困难和挑战所在。为了提高识别率,除了不断的完善识别算法,还应该想办法克服各种光照条件,使采集到的图像最利于识别。

车牌识别厂家哪家好?武汉车牌识别哪家好?首选优位停车,为用户提供2017停车系统设计方案效果图,整体报价。包括车牌识别停车场效果图、车牌识别设备,安装线材,车牌识别问题解答。武汉海量案例,政府单位,事业单位,工业物流园,小区,商场,医院,学校都广泛采用优位停车车牌识别系统。

上文就是道尔智控小编分享贡献者:(苍半凉)解答的关于“车牌识别程序里qiege里面填什么”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续谈论下文用户【You are my eyes. 你是我的眼。】贡献的“车牌识别系统主要识别车牌什么”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

车牌识别系统主要识别车牌什么

本文最佳回答用户:【You are my eyes. 你是我的眼。】 ,现在由道尔智控小编为你解答与【车牌图像】的相关内容!

最佳回答汽车牌照自动识别技术

它是利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。

自动识别技术分为硬识别和软识别(其实两者是相辅相成的)

“硬件识别”就是通过独立的硬件设备,对所抓拍图片进行一系列的字符处理;目前停车场系统行业中硬件识别也分为两种,即带有单独的车牌识别仪和前端硬件识别两种。前端硬件识别一体式摄像机是将传统单独的车牌识别仪嵌入至摄像机中,实现前端硬件与摄像机一体化,完美实现图像抓拍、视频流传输、字符识别、道闸抬杆等一系列的工作。

“软件识别”可以理解为通过软件对车牌号码进行的,通过在电脑上安装一个配套的车牌识别软件,对抓拍的图片进行识别处理。其工作方式是通过摄像机连续抓拍多张照片,选择其中较为清晰的一张,然后通过电脑软件进行字符处理,实现车牌识别的。因为每次识别需要抓拍多张照片,因此软识别的较慢。而且软识别系统对所抓拍的图片要求也是极高的,必须极为清晰才能达到想要的效果。该系统对现场环境以及调试质量要求极高,在诸多环境不佳的场合都不适用,并且识别设备的摆放也是非常重要的。

软硬识别的对比:

1、分析识别模式

硬识别系统:采用视频流分析识别,对监控范围内的视频流进行全天候实时分析;

软识别系统:图片分析识别,对到达指定范围内的车辆进行拍照,再对照片进行分析;当车辆位置不佳时,识别易出错。

2、智能算法模型

硬识别系统:采用智能模糊点阵识别算法,准确率更高,识别率大于99.70%。很少需要人工干预。

软识别系统:OCR/字型拓扑结构识别算法,会频繁出现误识别情况,准确率低于90%。需要人工不断输入纠正后的号牌。

3、可靠性及稳定性:

硬识别系统:专用识别器采用TI 公司的高速DSP,双CPU控制,确保系统可靠性和稳定性。

软识别系统:软件识别,容易频繁出现死机等情况,需经常重新启动电脑,造成间断性系统瘫痪。

软硬识别优势互补:

在硬件识别不出来或者硬件识别错误的情况下,启用软识别,完美融合,融合后准确率达99.99%。该技术常用于停车场及小区出入口、高速公路收费站、公路卡口和城市交通。

目前国内比较好的车牌识别厂家有科拓、捷顺、享泊科技、西安艾润、道尔智控。

简单说一下这几家厂商:

【科拓】

1、产品多元化

致力于研发并提供多元全面的智慧停车场应用解决方案,只围绕停车场做业务延伸,公司所能做的停车场业务点覆盖最广

2、硬件品和软件技术

科拓有自己的硬件及软件人才,能独立做硬件及软件,省去中间供应商环节,成本低。

3、停车场行业资历较深

公司始创于2006年,总部位于厦门,在北京、上海、广州等全国重点城市拥有二十多家全资子公司、分公司及办事处,实力雄厚。

【捷顺】

1、公司成立于1992年,上市公司,有政府背景。

2、有资本助力,送设备已名声在外。

3、道闸及软硬件一般,技术能力一般。

【享泊科技】

1、新兴的互联网公司,属于系统集成商,软识别比较厉害。

2、停车场的软件和云平台系统有较大优势,毕竟骨干在华为干了十几年。

3、主要在上海开展业务,其他地方只能去他们官网购买产品,而且不包邮,不包安装(安装要钱)。

【西安艾润物联网技术服务有限责任公司】

1、硬件产品行业内一般化,软件行业知名。

2、软件行业优势(能做到:云服务平台、多车位多车、电子优惠券、定制化开发、对接会员管理系统、报表分析、兼容第三方软件平台)

3、能做无线技术,采用无线路由(有待验证,公司宣传能做)

【深圳市道尔智控科技股份有限公司】

1、上市公司

2、支持运营报表输出(BI分析系统)

3、支持微信、支付宝支付

4、有自己的道儿云开放平台,可定制化开发

5、车牌识别准度一般

以上就是道尔智控小编解答(You are my eyes. 你是我的眼。)分析关于“车牌识别系统主要识别车牌什么”的答案,接下来继续为你详解用户(不爱请闪开)贡献“通过车牌识别是大车还是小车”的一些相关解答,希望能解决你的问题!

通过车牌识别是大车还是小车

本文最佳回答用户:【不爱请闪开】 ,现在由道尔智控小编为你解答与【车牌图像】的相关内容!

最佳回答轿车:车牌蓝底白字,一般指5座以下。

小型客车:车牌蓝底白字,一般指6座。

中型客车:车牌黄底黑字,一般指7--19座。

大型客车:车牌黄底黑字:19座。

小型货车:车牌蓝底白字。

大中型货车:车牌黄底黑字。

------安-视-宝

车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块。

一、车辆检测跟踪模块

车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置最佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。

二、车牌定位模块

车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统完全摒弃了以往的算法思路,实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。

三、车牌矫正及精定位模块

由于受拍摄条件的限制,图像中的车牌总不可避免存在一定的倾斜,需要一个矫正和精定位环节来进一步提高车牌图像的质量,为切分和识别模块做准备。使用精心设计的快速图像处理滤波器,不仅计算快速,而且利用的是车牌的整体信息,避免了局部噪声带来的影响。使用该算法的另一个优点就是通过对多个中间结果的分析还可以对车牌进行精定位,进一步减少非车牌区域的影响。

四、车牌切分模块

车牌系统的车牌切分模块利用了车牌文字的灰度、颜色、边缘分布等各种特征,能较好地抑制车牌周围其他噪声的影响,并能容忍一定倾斜角度的车牌。这一算法有利于类似移动式稽查这种车牌图像噪声较大的应用。

五、车牌识别模块

在车牌识别系统中,通常采用多种识别模型相结合的方法来进行车牌识别,构建一种层次化的字符识别流程,可有效地提高字符识别的正确率。另一方面,在字符识别之前,使用计算机智能算法对字符图像进行前期处理,不仅可尽可能保留图像信息,而且可提高图像质量,提高相似字符的可区分性,保证字符识别的可靠性。

六、车牌识别结果决策模块

识别结果决策模块,具体地说,决策模块利用一个车牌经过视野的过程留下的历史记录,对识别结果进行智能化的决策。其通过计算观测帧数、识别结果稳定性、轨迹稳定性、稳定性、平均可信度和相似度等度量值得到该车牌的综合可信度评价,从而决定是继续跟踪该车牌,还是输出识别结果,或是拒绝该结果。这种方法综合利用了所有帧的信息,减少了以往基于单幅图像的识别算法所带来的偶然性错误,大大提高了系统的识别率和识别结果的正确性和可靠性。

七、车牌跟踪模块

车牌跟踪模块记录下车辆行驶过程中每一帧中该车车牌的位置以及外观、识别结果、可信度等各种历史信息。由于车牌跟踪模块采用了具有一定容错能力的运动模型和更新模型,使得那些被短时间遮挡或瞬间模糊的车牌仍能被正确地跟踪和预测,最终只输出一个识别结果。

以上就是道尔智控小编解答(不爱请闪开)贡献关于“通过车牌识别是大车还是小车”的答案,接下来继续为你详解用户(い一秒一夏`一光年°)分析“辽宁车牌水印图案”的一些相关解答,希望能解决你的问题!

辽宁车牌水印图案

本文最佳回答用户:【い一秒一夏`一光年°】 ,现在由道尔智控小编为你解答与【车牌图像】的相关内容!

最佳回答山东车牌水印图案是山东警察。

很多细心研究过车牌的朋友一定知道这么一件事,那就是各个地方的车牌虽然都由蓝底白字构成,但上面其实还有漂亮的水印,并且各个地区都不相同。

举几个例子,以四川为例,在车牌上用黑色水印印上了大熊猫的logo,这表明大熊猫是四川最著名的动物。当然,其他地方也有各自的特色水印,例如云南的车牌就将当地独特的大象logo印刻在车牌中,颜色很淡不仔细看还真不一定能发现。

青海省地处我国西部地区,在荒茫的戈壁上最著名的就是国家一级保护动物藏羚羊,因此他们将藏羚羊的图像logo刻在车牌上。而作为拥有丰富历史积淀的陕西,这里将秦始皇兵马俑的图片放在了车牌上,以彰显自己深厚的文化底蕴。

注意:

甘肃和陕西一样也拥有丰富历史,尤其是著名的马踏飞燕几乎全国人民都认识,因此将这个历史文物简化成logo印在车牌上。

江苏作为鱼米之乡并没有选择水稻等不具独特代表性的农作物或动物,而是用极具历史意义的南京长江大桥作为水印主体,看起来既有文化又显得与众不同。

安徽最著名的旅游景点为黄山,而黄山最出名的就是迎客松,这颗松树是让黄山区别于其他山的标志性象征,因此安徽车牌将黄山迎客松水印刻在了车牌上。

然而作为文化、农业、经济大省的山东却并未在车牌上印刻任何具有标志性logo,反而非常简单地印了一个“鲁”字,显得特别简单。个人认为,像济南的趵突泉、孔子画像、泰山等等能代表山东的人或物都要比简简单单一个“鲁”字更有文化底蕴和深度。

以上就是道尔智控小编解答(い一秒一夏`一光年°)分析关于“辽宁车牌水印图案”的答案,接下来继续为你详解用户(桃花峪﹝)回答“车牌识别系统是怎么操作的”的一些相关解答,希望能解决你的问题!

车牌识别系统是怎么操作的

本文最佳回答用户:【桃花峪﹝】 ,现在由道尔智控小编为你分析与【车牌图像】的相关内容!

最佳回答车牌识别系统其实就是基于成熟的光学字符识别(OCR)技木,从包含车牌的图片里,把车牌号码提取出来,比如云脉智能车牌识别系统,支持单张拍摄或连拍,对所得车牌图像进行快速识别,并自动捕捉车牌信息并分类至正确字段.

以上就是道尔智控小编解答(桃花峪﹝)回答关于“车牌识别系统是怎么操作的”的答案,接下来继续为你详解用户(翰墨)贡献“车牌白天能识别晚上不能识别”的一些相关解答,希望能解决你的问题!

车牌白天能识别晚上不能识别

本文最佳回答用户:【翰墨】 ,现在由道尔智控小编为你讲解与【车牌图像】的相关内容!

最佳回答现在市面上有些车牌识别系统出现实际使用效果差的情况,究其原因是一些停车场系统厂家没有自主研发车牌识别系统的能力,只能外购车牌识别软件,但是对于外购的车牌识别软件的识别结果太差的原因不明所以,对提高识别率也就无能为力。要想解决识别不了的问题就要做到以下两点。

一、感光部件对外部环境的处理

环境是影响车牌识别的主要因素,在采集车辆图像时,由于环境光线变化剧烈,白天光较强、夜间较弱,面光与背光不同,上午和下午的光照方向也不一样,抓拍图像时受环境光线影响较大,车速过高、采集设备的动态范围等都使成像质量难以得到有效保证。当识别算法认为车牌达到了最佳成像位置时系统触发系统开始拍摄,这对触发设备的可靠性和响应都有较高的要求。所以要解决环境造成识别率低下的问题,还要靠摄像机的感光部件对外部环境的处理。

二、对图像预处理

车牌定位之前一般要对图像做预处理,然后再进行车牌的定位、分割、识别等部分。由于得到的车牌图像可能含有较多噪声,或图像对比度不强、车牌被部分遮挡、车牌处出现污点、变脏、模糊退色、有其它字符区域干扰、以及出现因运动产生的图像模糊失真等情况,所以定位算法实现起来有较多困难。对于字符分割,则可能存在光照不均、污迹严重、车牌倾斜、对比度小、牌照退色、牌照字符粘连等不利因素,这样就需要研发与之适应的算法。如算法能适应各种复杂环境和有噪声、车牌遮挡、车牌倾斜等状况的话,那就可以大大提高车牌识别的概率。

以上就是道尔智控小编解疑贡献者:(翰墨)解答的关于“车牌白天能识别晚上不能识别”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续祥解下文用户【百户千灯】解答的“车牌识别系统图像边缘”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。

车牌识别系统图像边缘

本文最佳回答用户:【百户千灯】 ,现在由道尔智控小编为你详解与【车牌图像】的相关内容!

最佳回答车牌识别停车场系统工作原理:

停车场车牌自动识别系统是以计算机技术、图像处理技术、模糊识别为基础,建立车辆的特征模型,识别车辆特征,如号牌、车型、颜色等。它是一个以特定目标为对象的专用计算机视觉系统,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别。它运用先进的图像处理、模式识别和人工智能技术,对采集到的图像信息进行处理,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并直接给出识别结果,使得车辆的电脑化监控和管理成为现实。

停车场车牌自动识别系统既然是“系统”,当中软硬件架构的好坏,当然会影响“呈现的结果”。至于什么样的软件跟硬件,适合什么样的环境,这就必须因环境而异,因为不同的应用环境,对于辨识率的要求未必相同,现在各大厂商都选择了自己善长的场景并对其算法做了针对性的处理,比如火眼臻睛车牌识别系统就是专门针对停车场的,他对停车场的大角度,雨雾天气,顺逆光等场景做了专门的算法处理机制。

本文关于[车牌图像]的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文来自网络,不代表本站立场,转载请注明出处:http://ask.drzk.cn/cpsb/19648.html

作者: 道尔智控

道尔智控致力于智慧停车生态化建设,涵盖停车场管理系统、智慧停车系统、停车场系统、车牌识别 、门禁系统、道闸、通道闸、车位引导系统、云停车等。同时又为用户提供各种关于车牌、车型识别停车、停车场系统、通道道闸机等技术小知识,让您停车更智能、更简单、更便捷。
上一篇:(深圳车牌电子标识)深圳小货车电子标识
下一篇:车牌识别系统被拉黑名单了,车牌识别扫码显示黑名单怎么回事
联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱:drzk@drzk.cn

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部