道尔智控 > 车场道闸 > 环形闸道,电磁感应中有个环形闸的题目

环形闸道,电磁感应中有个环形闸的题目

导读电磁感应原理的方向的判断本文最佳回答用户:【糖吃多会腻】 ,现在由道尔智控小编为你分析与【环形闸道】的相关内容!答磁铁和电流都能够产生磁场,电流的磁场是由电荷的运动...

今天我们来分折有关环形闸道,电磁感应中有个环形闸的题目,以下7个关于环形闸道的观点希望能帮助到您找到想要的答案。

电磁感应原理的方向的判断

本文最佳回答用户:【糖吃多会腻】 ,现在由道尔智控小编为你分析与【环形闸道】的相关内容!

磁铁和电流都能够产生磁场,电流的磁场是由电荷的运动形成的,那么磁铁的磁场是如何产生的呢?法国学者安培根据环形电流的磁性与磁铁相似,提出了著名的分子电流的假说。他认为,在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为一个微小的磁体,它的两侧相当于两个磁极。这两个磁极跟分子电流不可分割地联系在一起。安培的假说,能够解释各种磁现象。一根软铁棒,在未被磁化的时候,内部各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外界不显磁性。当软铁棒受到外界磁场的作用时,各分子电流的取向变得大致相同,软铁棒就被磁化了,两端对外界显示出较强的磁作用,形成磁极。磁体受到高温或者受到猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械运动的影响下,分子电流的取向又变得杂乱了。在安培所处的时代,人们对原子结构还毫无所知,因而,对物质微粒内部为什么会有电流是不清楚的。直到20世纪初期,人类了解了原子内部的结构,才知道分子电流是由原子内部的电子的运动形成的。安培的磁性起源的假说,揭示了磁现象的电本质。它使我们认识到,磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的。

但是仅凭“电荷运动产生磁场”还不足以说明以下三个问题:1.运动电荷周围的磁场为何其磁力线方向符合右手螺旋法则而不是左手螺旋法则?2.通电直导线周围有环形磁场,为何磁力线方向也符合右手螺旋法则而不是左手螺旋法则?3.原子磁矩如何确定N极和S极?唯一的解释只能是“电荷运动时自旋”,自旋产生磁场,磁力线方向与自旋方向有关。“电荷运动时自旋”这一判断虽然是来自于推理,但能够解释一切电磁现象,下面一一讲述:

一、电生磁

电荷静止时不自旋,只产生电场,不产生磁场。

电荷运动时自旋,并在周围产生环形磁场。正电荷运动时的自旋方向和磁场方向为:右手半握,拇指伸开,拇指指向正电荷前进方向,其余四指就指向自旋方向,磁力线方向与自旋方向相同。负电荷运动时的自旋方向和磁场方向为:左手半握,拇指伸开,拇指指向负电荷前进方向,其余四指就指向自旋方向。磁力线方向与自旋方向相反。

通有直流电流的直导线中,电子排着队向前运动,因电子自旋的作用,导线周围有环形磁场。电子自旋方向和磁场方向为:左手半握,拇指伸开,拇指指向负电荷前进方向,其余四指就指向自旋方向,磁力线方向与自旋方向相反。

若将通有直流电流的直导线弯曲成圆形,则环形磁场闭合,对外表现为磁矩。电流方向和磁极方向的关系符合右手螺旋法则:右手半握,拇指伸开,除拇指外的四指指向电流方向,则拇指指向N极方向。

电子绕原子核运动,可视为通有直流电流的圆形导线,对外表现为原子磁矩。电子运动方向和磁极方向的关系符合左手螺旋法则:左手半握,拇指伸开,除拇指外的四指指向电子运动方向,则拇指指向N极方向。

二、电作用于磁

电场产生磁场,然后吸引或排斥其他磁场,例如通电直导线可使旁边的小磁针偏转、电磁铁的应用、电动机的应用。

三、磁作用于电

通电导线在磁场中所受作用力的方向跟磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向。原因如下:设均匀磁场的磁力线向下垂直于纸面,通电导线平放在纸面上,方向正南正北,电流方向为北方。我们可以这样理解均匀磁场的磁力线:在纸面上,在通电导线的西侧有一个通直流电的长直导线,方向正南正北,电流方向为北方,它产生的环形磁场,一半在纸面上,另一半在纸面下,则在通电导线的位置磁力线是垂直向下的,且在其附近的分布近似均匀。通电导线本身也产生环形磁场,磁力线符合右手螺旋法则,它与长直导线的磁场相互吸引,故通电导线的受力方向为正西,与电流方向(正北)成90度。

当通电导线跟磁场方向平行时,磁场对导线的作用力为零。原因同上,只是通电导线与假想的长直导线不再平行,而是成90度夹角,故相互作用力为零。

如果通电导线跟磁场方向既不垂直也不平行而成任一角度,磁场对电流有作用力,但作用力比互相垂直的情形要小。

带电粒子在磁场中静止时不受磁场力。原因如下:带电粒子在磁场中静止时不自旋,无环形磁场。

带电粒子在磁场中运动时,若垂直于磁力线方向,则粒子做匀速圆周运动,磁场力是向心力。带正电粒子在磁场中所受作用力的方向跟磁场方向、运动方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向带正电粒子的运动方向,那么,拇指所指的方向,就是带电粒子在磁场中的受力方向。原因如下:设均匀磁场的磁力线向下垂直于纸面,带正电的粒子在纸面上向北运动,我们可以认为在纸面上,在带电粒子的西侧有一个通直流电的长直导线,方向正南正北,电流方向为北方,它产生的环形磁场,一半在纸面上,另一半在纸面下,则在带电粒子的位置磁力线是垂直向下的,且在其附近的分布近似均匀。带正电的粒子的运动也产生环形磁场,磁力线符合右手螺旋法则,它与长直导线的磁场相互吸引,故粒子受力方向为正西,与前进方向(正北)成90度。

若带电粒子平行于磁力线时,粒子不受磁场力。原因同上,只是带电粒子产生的环形磁场的磁力线与所在磁场的磁力线相互垂直,故不受力。

磁场中的通电线圈会发生偏转。原因是磁场与通电线圈的磁矩相互作用。

四、磁生电

导体的两端接在电流表的两个接线柱上,组成闭合电路,当导体在磁场中向左或向右运动,切割磁力线时,电流表的指针就发生偏转,表明电路中产生了电流.这样产生的电流叫感应电流。我们知道,穿过某一面积的磁力线条数,叫做穿过这个面积的磁通量。当导体向左或向右做切割磁力线的运动时,闭合电路所包围的面积发生变化,因而穿过这个面积的磁通量也发生了变化。导体中产生感应电流的原因,可以归结为穿过闭合电路的磁通量发生了变化。可见,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。这就是产生感应电流的条件。感应电流的方向:导体向左或向右运动时,电流表指针的偏转方向不同,这表明感应电流的方向跟导体运动的方向有关系。如果保持导体运动的方向不变,而把两个磁极对调过来,即改变磁力线的方向,可以看到,感应电流的方向也改变。可见,感应电流的方向跟导体运动的方向和磁力线的方向都有关系.感应电流的方向可以用右手定则来判定:伸开右手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把右手放入磁场中,让磁力线垂直穿入手心,大拇指指向导体运动的方向,那么其余四个手指所指的方向就是感应电流的方向。

感应电流究竟是如何产生的呢?设均匀磁场的磁力线向下垂直于纸面,导体平放在纸面上,方向正南正北,移动方向为西方。(用右手定则判感应电流方向为南方)。当导体向西移动时,可视为导体中的电荷也向西移动,而电荷在磁场中所受作用力的方向跟磁场方向、电荷运动方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电荷的运动方向(西方),那么,拇指所指的方向(南方),就是电荷在磁场中的受力方向。所以电流方向应是南方。

把线圈的两端接在电流表上,组成闭合电路.当向线圈中插入或拔出磁铁时,电流表的指针偏转,表明电路中产生了感应电流。这是因为向线圈中插入磁铁时,穿过线圈的磁通量增大,从线圈中拔出磁铁时,穿过线圈的磁通量减小。穿过线圈的磁通量发生了变化,因而产生了感应电流。向线圈中插入或拔出磁铁的过程可以等效为导体切割磁力线的过程。磁通量的变化只是产生感应电流的表层的原因,真正的原因还是线圈中的电荷受洛仑兹力运动。

总结:“电荷运动时自旋”这一判断虽然是来自于推理,但确实能够解释一切电磁现象,暂时还算是站的住脚的,下一步就是接受实践的检验了。另外我认为产生磁场的真正原因,确切地说不是电荷的运动,而是电荷的旋转。使带静电荷的物体高速旋转,肯定可以观测到磁场的产生

以上就是道尔智控小编解答贡献者:(糖吃多会腻)贡献的关于“电磁感应原理的方向的判断”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,现在接着继续浅析下文用户【小巷陌影】解答的“有关电磁感应中的感应磁场和原磁场”的一些相关疑点做出分析与解答,如果能找到你的答案,可以关注本站。

电磁感应原理的方向的判断

有关电磁感应中的感应磁场和原磁场

本文最佳回答用户:【小巷陌影】 ,现在由道尔智控小编为你讲解与【环形闸道】的相关内容!

1,判断,虽然感应电动势在楞次定律,但楼主说,这种情况是由于磁场的磁感应强度的增加在一个封闭的循环或闭合电路的磁通量的增加,问题我同意二楼,具体原因的分析请参阅第二个问题的答案。
所以是这样的:磁场的磁感应强度增强,最终将提高1 t,增强的过程,然而,时间变长了。
2,整个过程真的阻碍在克服障碍工作(不一定是电阻),但是该系统总能量是守恒的。
分析:磁场的磁感应强度增强闭路封闭环或增加引起的磁通,所以有一个可以转换为电场磁场,磁场,但增强显然是有一些原因,如增强的电磁铁线圈的电流,最终由于电流磁场的增加会增加1 t(即磁场磁感应强度的增加最初1 t,最终会增加1 t),变化的磁场在闭环或闭合电路,必须有一个磁场可以转换为电场,但最初的能量来源是没有开始,但早前的原因,如电流电场的增加可以从权力由最后一个线圈,所以,最终这将增加原磁场的数量不会减少。

上文就是道尔智控小编分享贡献者:(小巷陌影)解答的关于“有关电磁感应中的感应磁场和原磁场”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,接下来继续分享下文用户【百业兴旺】分析的“有关高二电磁感应的一道题目”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

有关高二电磁感应的一道题目

本文最佳回答用户:【百业兴旺】 ,现在由道尔智控小编为你解答与【环形闸道】的相关内容!

ABD正确。
分析:
的研究,由于磁感应强度大小相等,方向相反,双方,双方磁场线框包围的面积是相等的,所以一般通过循环磁通为零。
B项,用右手定则确定ab和CD,而切割磁感应线运动,ab产生感应电流方向是向下的,CD感应电流方向,电动势方向的两侧是“高”的循环,每条边的电动势提单* V0,所以循环总电动势2提单* V0。
C错,右手定则,电路的感应电流方向是逆时针的。
D,表示双方平等的电流,由左手定则判断出来,他们都由安培力的方向是向左。

以上就是道尔智控小编解答(百业兴旺)回答关于“有关高二电磁感应的一道题目”的答案,接下来继续为你详解用户(我是贱人爱过烂人)分析“高中物理电磁感应的选择题”的一些相关解答,希望能解决你的问题!

高中物理电磁感应的选择题

本文最佳回答用户:【我是贱人爱过烂人】 ,现在由道尔智控小编为你分析与【环形闸道】的相关内容!

C, D
带负电绕中心旋转时产生循环电流,电流环的方向和旋转方向相反。环电流会产生磁场,当环旋转以恒定速度等于电流强度是常数,所以磁场是恒定的,因此通过小圆通量没有改变,就不会有感应电流在小圆:如果大圆做变速旋转,通过小圆通量变化,会有感应电流的小圆。所以选择C, D

以上就是道尔智控小编解答(我是贱人爱过烂人)回答关于“高中物理电磁感应的选择题”的答案,接下来继续为你详解用户(清月舟)分析“如图所示,一个闭合环形线圈放在变化的磁场中,磁感应强度B随时间t的变化如图(a)所示.设在第1s内磁感”的一些相关解答,希望能解决你的问题!

如图所示,一个闭合环形线圈放在变化的磁场中,磁感应强度B随时间t的变化如图(a)所示.设在第1s内磁感

本文最佳回答用户:【清月舟】 ,现在由道尔智控小编为你解答与【环形闸道】的相关内容!


,在0 ~ 2 s,磁感应强度均匀变化,<跨类=“MathZyb mathtag”=“数学”=“空白:nowrap;} WordSpacing:正常,自动换行:正常”> <表格单元格边距=“1”单元格间距=“1”风格=“边缘-右:1 px”> < td风格=“边界-底:1 px固体黑色”>δB < tr > < td >δt 相同,根据法拉第电磁感应定律:E = <跨类=“MathZyb mathtag”=“数学”=“空白:nowrap;} WordSpacing:正常,自动换行:正常”> <表格单元格边距=“1”单元格间距=“1”风格=“边缘-右:1 px”> < td风格=“边界-底:1 px固体黑色”>δΦ < tr > < td >δt = <跨类=“MathZyb mathtag”=“数学”=“空白:nowrap;} WordSpacing:正常,自动换行:正常”> <表格单元格边距=“1”单元格间距=“1”风格=“边缘-右:1 px”> < td风格=“边界-底:1 px固体黑色”>δB < tr > < td >δt s, s,感应电动势是常数,闭合电路欧姆定律,感应电流大小是相同的,因此,正确的。
B, 0和1,磁场的方向垂直于纸上,面向和均匀B减少,根据楞次定律,感应电流的方向是顺时针,在1 - 2 s,面临磁场的方向垂直于纸,和统一的B增加,根据楞次定律,感应电流的方向是顺时针的;因此,B是正确的。的,从分析
CD, CD是错误的。
所以选择:AB。

以上就是道尔智控小编解答贡献者:(清月舟)贡献的关于“如图所示,一个闭合环形线圈放在变化的磁场中,磁感应强度B随时间t的变化如图(a)所示.设在第1s内磁感”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,现在接着继续浅析下文用户【剑之女皇】回答的“关于电磁感应中线圈中感应电流的方向及磁场的判断”的一些相关疑问做出分析与解答,如果能找到你的答案,可以关注本站。

关于电磁感应中线圈中感应电流的方向及磁场的判断

本文最佳回答用户:【剑之女皇】 ,现在由道尔智控小编为你详解与【环形闸道】的相关内容!

嘿嘿,电流环,四个手指弯曲是电流方向,大拇指是当电流是线性的,N是拇指所指出的方向电流方向,四个手指弯曲的方向磁场的磁感应并不难这一天,想明白,多读一些书,看解释,磁感应线,感生电动势,右手法则,左手定则,楞次定律的这些原则和图可能还记得

上文就是道尔智控小编分享贡献者:(剑之女皇)回答的关于“关于电磁感应中线圈中感应电流的方向及磁场的判断”的问题了,不知是否已经解决你的问题?如果没有,下一篇内容可能是你想要的答案,下面继续描述下文用户【今日一别必是永远ゆ】贡献的“高中电磁感应的一道题目!”的一些相关问题做出分析与解答,如果能找到你的答案,可以关注本站。

高中电磁感应的一道题目!

本文最佳回答用户:【今日一别必是永远ゆ】 ,现在由道尔智控小编为你详解与【环形闸道】的相关内容!

澄清问题;(1)“环和金属消费的总热能的总热功率有两种理解,1,戒指,和金属条的瞬时功率消耗掉的卡路里;2,金属杆从开始运动到圆心的总平均功率的过程中热量。(2)“圆的中点时,时间点;盒子(1)第一种理解。
解决方案;圆的中点时产生电动势E = 2 BV *
电路并联电阻相当于两个电阻R R = R / 2和金条的电阻不为0。
所以热功率P ^ 2 = E / R和8(酒精)^ 2 / R =
是的,它不是在中间,前面还有一个电流,电流的正弦规律变化。电阻是不断变化的。当第一次变大变小了,中间总阻力是最大的。

关于[环形闸道,电磁感应中有个环形闸的题目]的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文来自网络,不代表本站立场,转载请注明出处:http://ask.drzk.cn/ccdz/735.html

作者: 道尔智控

道尔智控致力于智慧停车生态化建设,涵盖停车场管理系统、智慧停车系统、停车场系统、车牌识别 、门禁系统、道闸、通道闸、车位引导系统、云停车等。同时又为用户提供各种关于车牌、车型识别停车、停车场系统、通道道闸机等技术小知识,让您停车更智能、更简单、更便捷。
上一篇:金坛区刷卡道闸,金坛区道闸定制
下一篇:冠鼎广告道闸,百胜广告道闸
联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱:drzk@drzk.cn

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部